
Detecting and Revising Flaws in OWL Object
Property Expressions

C. Maria Keet

School of Mathematics, Statistics, and Computer Science, University of
KwaZulu-Natal, and UKZN/CSIR-Meraka Centre for Artificial Intelligence Research,

South Africa, keet@ukzn.ac.za

Abstract. OWL 2 DL is a very expressive language and has many fea-
tures for declaring complex object property expressions. Standard rea-
soning services for OWL ontologies assume the axioms in the ‘object
property box’ to be correct and according to the ontologist’s intention.
However, the more one can do, the higher the chance modelling flaws are
introduced; hence, an unexpected or undesired classification or inconsis-
tency may actually be due to a mistake in the object property box, not
the class axioms. We identify the types of flaws that can occur in the
object property box and propose corresponding compatibility services,
SubProS and ProChainS, that check for meaningful property hierarchies
and property chaining and propose how to revise a flaw. SubProS and
ProChainS were evaluated with several ontologies, demonstrating they
indeed do serve to isolate flaws and can propose useful corrections.

1 Introduction

There is considerable ongoing ontology development effort in various subject do-
mains, such as the life sciences, medicine, e-learning, and the enterprise. New
ontologies tend to be developed with the most recent W3C-standardised ontology
language, OWL 2 [1]. OWL 2 DL is based on the Description Logics (DL) lan-
guage SROIQ, which, thanks to ontology engineers’ requests for more features
for object properties, now allows for object sub-properties, (inverse) functional,
disjointness, equivalence, cardinality, (ir)reflexivity, (a)symmetry, transitivity,
and role chaining. There are a few syntactic constraints on their usage, but still
a lot is possible to declare, which also means there is now even more room to
make mistakes with respect to the ontologist’s intention in addition to those
noted for modelling with OWL 1 [2–4]. For instance,
(i) Domain and range flaws; e.g. (simplified), hasParent v hasMother instead of

hasMother v hasParent in accordance with their domain and range restric-
tions, or declaring a domain/range to be an intersection of disjoint classes;

(ii) Property characteristics flaws: e.g., the family-tree1 has hasGrandFather
v hasAncestor and Trans(hasAncestor) so that transitivity unintentionally is
passed down the property hierarchy (hasGrandFather is intransitive, which
cannot be asserted in OWL);

1 http://www.co-ode.org/roberts/family-tree.owl; last accessed 12-3-2012.

(iii) Property chain issues; e.g., hasPart ◦ hasParticipant v hasParticipant in the
pharmacogenomics ontology [5] that forces the classes in class expressions
using these properties (DrugTreatment and DrugGeneInteraction) to be either
processes due to the domain of hasParticipant, or they will be inconsistent.

Such flaws and unexpected or undesirable deductions are not properly recognised
and implemented in explanation features by the extant reasoners and ontology
development environments and therewith do not point to the actual flaw in the
object property box. This is primarily because implemented justification and
explanation algorithms, such as [6, 2, 7], focus only on logical deductions and
errors, and take for granted that class axioms and assertions about instances
have to take precedence over what ‘ought to be’ regarding the object property
axioms. Therefore, with the standard reasoning, the object property expres-
sions (inclusion axioms)—i.e., property hierarchy, domain and range axioms, a
property’s characteristics, and property chains—are assumed to be correct, but
instances and classes can move about in the taxonomy. However, the modeller
may well be certain where in the taxonomy a particular class belongs, or at least
its main category, but not so sure about how to represent its properties. This
is a reasonable assumption, given that many ontologies commence with just a
bare taxonomy and only gradually add properties, and the advanced OWL 2 DL
features for object properties are still relatively new. Therewith it has become
an imperative to look at how one can get the modeller to choose the ontologi-
cally correct options in the object property box so as to achieve a better quality
ontology and, in case of flaws, how to guide the modeller to the root defect from
the modeller’s viewpoint, and propose corrections. Overall, this requires one to
be able to recognise the flaw, to explain it, and to suggest revisions.

We address these issues by introducing two non-standard reasoning services.
First, we extend the RBox Compatibility Service for object subproperties from
[8] to also handle the object property characteristics, called Sub-Property com-
patibility Service (SubProS), and, second, we define a new ontological reasoning
service, Property Chain compatibility Service, (ProChainS), that checks whether
the chain’s properties are compatible. The compatibility services are defined in
such a way as to exhaustively check all permutations and therewith pinpoint to
the root cause in the object property box, where applicable. If a test of either
service fails, proposals are made to revise the identified flaw. As such, Sub-
ProS and ProChainS can be considered ontological reasoning services, because
the ontology does not necessarily contain logical errors in some of the flaws de-
tected. The solution thus falls in the category of tools focussing on both logic
and additional ontology quality criteria, alike the works on anti-patterns [4] and
OntoClean [9], by aiming toward ontological correctness in addition to just a
satisfiable logical theory. Hence, it is different from other works on explanation
and pinpointing mistakes that concern logical consequences only [6, 2, 7], and
SubProS and ProChainS also propose revisions for the flaws.

In the remainder of the paper, we address property subsumption and Sub-
ProS in Section 2, and property chaining with ProChainS in Section 3. We
conclude in Section 4.

2 Sub-Properties in OWL

2.1 Preliminaries

Subproperties in OWL have a “basic form” and a “more complex form”. The
former is denoted in OWL 2 functional syntax as SubObjectPropertyOf(OPE1
OPE2), which says that object property expression OPE1 is a subproperty of
OPE2, meaning that “if an individual x is connected by OPE1 to an individ-
ual y, then x is also connected by OPE2 to y” [1]. The simple version is de-
noted in Description Logics (DL) as S v R and a typical use case is proper-
PartOf v partOf. The more complex form concerns property chains, denoted with
SubObjectPropertyOf(ObjectPropertyChain(OPE1 ... OPEn) OPE) in OWL
2 and several additional syntactic constraints hold. It is called “complex role in-
clusions” in DL, and is defined succinctly in [10]. More generally, (sub-)properties
are constrained by the Role Inclusion Axioms as defined in [10] for SROIQ, the
base language for OWL 2 DL, which also provide the constraints for property
chains in OWL 2, and is included below as Definition 1. Informally, case 1 cov-
ers transitivity of R, case 2 inverses, case 3 chaining of simple object properties
provided the regularity constraint hold (a strict order) so as to maintain decid-
ability, and for case 4 and 5, the property on the right-hand side either occurs
first or last in the chain on the left-hand side of the inclusion axiom.

Definition 1 ((Regular) Role Inclusion Axioms ([10])). Let ≺ be a regular
order on roles. A role inclusion axiom (RIA for short) is an expression of the
form w v R, where w is a finite string of roles not including the universal role
U , and R 6= U is a role name. A role hierarchy Rh is a finite set of RIAs. An
interpretation I satisfies a role inclusion axiom w v R, written I |= w v R, if
wI ⊆ RI . An interpretation is a model of a role hierarchy Rh if it satisfies all
RIAs in Rh, written I |= Rh. A RIA w v R is ≺-regular if R is a role name,
and
1. w = R ◦R, or
2. w = R−, or
3. w = S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or
4. w = R ◦ S1 ◦ . . . ◦ Sn and Si ≺ R, for all 1 ≥ i ≥ n, or
5. w = S1 ◦ . . . ◦ Sn ◦R and Si ≺ R, for all 1 ≥ i ≥ n.

Finally, a role hierarchy Rh is regular if there exists a regular order ≺ such
that each RIA in Rh is ≺-regular.

For reasons of conciseness and readability, we shall use this notation and “◦” for
chaining rather than the wordy OWL functional style syntax.

In the remainder of this section, we look into the “basic form” for sub-
properties, i.e., S v R, and consider property chains (cases 3-5 of Def. 1) in Sec-
tion 3. To increase readability, we shall use R v C1×C2 as shortcut for domain
and range axioms ∃R v C1 and ∃R− v C2 where C1 and C2 are generic classes—
ObjectPropertyDomain(OPE CE) and ObjectPropertyRange(OPE CE) in OWL,
respectively. R v > × > holds when no explicit domain and range axiom has
been declared.

2.2 When a property is a subproperty of another

With class subsumption, the subclass is more constrained than its superclass,
which can be applied to properties as well: subsumption for OWL object prop-
erties (DL roles) holds if the subsumed property is more constrained such that
in every model, the set of individual property assertions is a subset of those
of its parent property, or: given S v R, then all individuals in the property
assertions involving property S must also be related to each other through prop-
erty R. There are two ways to constrain a property, where either one suffices:
by specifying its domain or range, and by declaring the property’s characteristics.

Subsumption due to domain and range axioms. Given a subproperty expression
S v R, then in order to have the instances of S to be always a subset of the
instances of R, S’s domain or range, or both, have to be subclasses of the domain
and range of R. Although this might be perceived to have an object-oriented and
conceptual data modelling flavour, it is widely used (see also Table 1) and declar-
ing domain and range axioms has certain advantages in automated reasoning as
as well constraining the admissible models and therewith being more precise
in representing the knowledge. Let us first introduce the notion of user-defined
domain and range classes for OWL ontologies:

Definition 2 (User-defined Domain and Range Classes). Let R be an
OWL object property and R v C1 × C2 its associated domain and range axiom.
Then, with the symbol DR we indicate the User-defined Domain of R—i.e.,
DR = C1—and with the symbol RR we indicate the User-defined Range of R—
i.e., RR = C2.

Thus, we need to specify that it ought to be the case that, given an axiom
S v R, DS v DR and RS v RR holds, and propose to the ontologist ways to
revise the flaw if this is not the case, as it may lead to undesired, or at least
‘unexpected’, behaviour of the reasoner, being that either the domain class DS

is classified elsewhere in the hierarchy as a subclass of DR, or, if the classes were
declared disjoint, then DS becomes inconsistent. This was addressed in detail
in [8] and solved with the RBox Compatibility service, for which the DL ALCI
sufficed to define it. We shall adapt it to OWL 2 DL and extend that service
and options to correct it in the next section.

Subsumption due to the property’s characteristics. Relational properties—OWL
object property characteristics—constrain the way objects relate to each other;
e.g., if an ABox contains connectedTo(a, b), then only if connectedTo is (cor-
rectly) asserted to be symmetric then it will infer connectedTo(b, a). One can
argue for a property hierarchy with respect to the characteristics of the prop-
erties; e.g., a property is asymmetric if it is both antisymmetric and irreflexive,
hence, if a property is asymmetric, it certainly is also irreflexive but not vv.
Again, a subproperty has be more constrained than its parent property and, as
with inheritance of properties for classes, the property’s characteristic(s) should

be inherited along the property hierarchy or overridden with a stronger con-
straint. With this line of reasoning and S v R, then, e.g., Asym(S) and Irr(R) is
admissible, but the other way around, Irr(S) and Asym(R) is a flaw where either
both are, or neither one is, asymmetric or R v S would be the intended axiom.
One can observe this also for the commonly used parthood and proper parthood
relations: the former is reflexive, antisymmetric, and transitive, and the latter
irreflexive, asymmetric, and transitive. Conversely, direct parthood (dpo) is in-
transitive, yet tends to be represented in an OWL ontology as a subproperty of
parthood (po). However, one cannot represent intransitivity in OWL explicitly
(not asserting transitivity means a property is non-transitive, not intransitive).

With respect to OWL 2 DL, the constraints become fairly straight-forward
with respect to a property hierarchy, because antisymmetry, acyclicity (which is
more constrained than asymmetric), and intransitivity cannot be represented.
However, current OWL reasoners do not take into account inheritance of prop-
erty characteristics even of the same relational property, except transitivity. That
is, if, e.g., Sym(R) then this does not hold automatically for S, which is easy
to check with any ontology editor: add S v R, Sym(R), C v ∃R.D, E v ∃S.F ,
r(c1, d1) and s(e1, f1) and observe the inferences. However, in such a setting, S
is non-symmetric, which is generally unintended, especially if there is some T
where T v S v R and Sym(T) and Sym(R). Note that adding Asym(S) is very
well possible. This holds for Ref and Irr, too.

2.3 The Sub-Property compatibility Service

We now can define the new reasoning service, Sub-Property compatibility Ser-
vice (SubProS) by extending the basic notions from the RBox compatibility [8].
Informally, it first checks the ‘compatibility’ of domain and range axioms with
respect to the object property hierarchy and the class hierarchy in the ontology.
The RBox compatibility service is already necessary and sufficient for finding
domain/range problems, because it exhaustively checks each permutation of do-
main and range of the parent and child property in the object property hierarchy.
After that, SubProS checks whether the object property characteristic(s) con-
form to specification, provided there is such an expression in the ontology.

Definition 3 (Sub-Property compatibility Service (SubProS)). For each
pair of object properties, R,S ∈ O such that O |= S v R, and O an OWL
ontology adhering to the syntax and semantics as specified in [1], check whether:

Test 1. O |= DS v DR and O |= RS v RR;
Test 2. O 6|= DR v DS;
Test 3. O 6|= RR v RS;
Test 4. If O |= Asym(R) then O |= Asym(S);
Test 5. If O |= Sym(R) then O |= Sym(S) or O |= Asym(S);
Test 6. If O |= Trans(R) then O |= Trans(S);
Test 7. If O |= Ref(R) then O |= Ref(S) or O |= Irr(S);
Test 8. If O |= Irr(R) then O |= Irr(S) or O |= Asym(S);

Test 9. If O |= Asym(R) then O 6|= Sym(S);

Test 10. If O |= Irr(R) then O 6|= Ref(S);

Test 11. If O |= Trans(R) then O 6|= Irr(R), O 6|= Asym(R), O 6|= Irr(S), and
O 6|= Asym(S);

An OWL object property hierarchy is said to be compatible iff

– Test 1 and (2 or 3) hold for all pairs of property-subproperty in O, and
– Tests 4-11 hold for all pairs of property-subproperty in O.

An OWL ontology O that does not adhere to SubProS is considered to be
ontologically flawed and is in need of repair. To arrive at the repair, we can
avail in part of the extant OWL reasoners. The class subsumption checking for
Tests 1-3 can be done with any of the OWL reasoners, where the result is
processed to check the conditions in the tests. Test 9 and Test 10 are already
done by OWL 2 DL reasoners, but it now only returns a class inconsistency
when S is used in a class expression, not regarding the property characteristics
per sé; hence, the explanation and suggestions for revision has to be amended:
with respect to the intended meaning, not the class expression is at fault, but
there is a flaw in the property hierarchy. Test 11 is included merely for purpose
of exhaustiveness, as it is already prohibited by the syntax restrictions of OWL
2 and already has a corresponding warning (irreflexivity and asymmetry require
simple object properties, but a transitive property is not simple), but it may
become relevant for any future OWL version or modification of SubProS for
another ontology language. By the same token, one could argue to remove Test

6, for it is already computed, but it makes it easier for any extensions of the
service or its adoption for another ontology language.

The following sequence specifies what has to be done if any of the applicable
tests fails. For Tests 1-3, we can reuse the basic 2-step idea from [8] and adapt it
to the current setting, and we propose new corrections for Tests 4-11. Observe
that “raising a warning” denotes that it is not a logical error but an ontological
one, “forcing” a revision indicates there is a logical error that must be fixed
in order to have a consistent ontology with satisfiable classes, and “propose”
indicates suggestions how the flaw can be best revised.

A. If Test 1 fails, raise a warning “domain and range restrictions of either R
or S are in conflict with the property hierarchy”, and propose to
? Change the object property hierarchy, i.e., either remove S v R and add
R v S or add S ≡ R to O, or

? Change domain and range restrictions of R and/or S, or
? If the test on the domains fails, then propose a new axiom R v D′R×RR,

where D′R ≡ DR uDS (and similarly when Test 1 fails on the range).
B. If Test 2 and Test 3 fail, raise a warning “R cannot be a proper subprop-

erty of S, but they can be equivalent”, and propose:
? Accept the possible equivalence and, optionally, add S ≡ R to O, or
? Change domain and range restrictions of R and/or S.

C. Run SubProS again if any changes have been made in steps A or B, and
record changes in the hierarchy (to be used in step I).

D. If Asym(R) is asserted in O and Test 4 fails to detect Asym(S), raise a warn-
ing “R is asymmetric, but its subproperty S is not”, proposing to remedy
this with either:
? Add Asym(S) to obtain expected inferences;
? Remove Asym(R);
? Change the positions of R and/or S in the object property hierarchy;

and similarly when Test 6 fails,
E. If Sym(R) is asserted and Test 5 fails to detect either Sym(S) or Asym(S),

raise a warning “R is symmetric, but its subproperty S is not, nor is it
asymmetric”, proposing to remedy this with either:
? Add Sym(S) or Asym(S) to obtain expected inferences;
? Remove Sym(R);
? Change the positions of R and/or S in the object property hierarchy;

and similarly when Test 7 fails,
F. If Irr(R) and Test 8 fails to detect either Irr(S) or Asym(S), raise a warning

“R is irreflexive, hence S should be either Irr(S) or Asym(S), and propose:
? Add Asym(S) or Irr(S) to obtain expected inferences;
? Remove Irr(R);
? Change the positions of R and/or S in the object property hierarchy;

G. If Test 9 fails, report “R is asymmetric so its subproperty, S, cannot be
symmetric” and force the modeller to change it by either
? Remove Asym(R), or
? Remove Sym(S).
? Change the positions of R and/or S in the object property hierarchy;

and similarly if Test 10 fails, but then irreflexive and reflexive, respectively.
H. If Test 11 fails, report “R (and by Test 6, S, too) is declared transitive,

hence, not a simple object property, hence it is not permitted to participate
in an irreflexive or asymmetric object property expression” and force the
modeller to change it by either:
? Remove Trans(R), or
? Remove Irr(R), Asym(R), Irr(S), and Asym(S);

I. Run SubProS again if any changes have been made in steps D-H, and check
any changes in the property hierarchy made against those recorded in step C.
If a change from steps E or F reverts a recorded change, then report “unre-
solvable conflict on subproperty axiom. You must change at least one axiom
to exit an otherwise infinite loop of swapping two expressions”.

The reason for running SubProS again after Test 1-3 and not only at the end is
that those changes, if any, will affect the outcome of Tests 4-11, and in Step I
to both push through the changes and prevent an infinite loop. SubProS was
evaluated with several ontologies, one of which illustrated now.

Evaluation 1 (BioTop’s inconsistent ‘has process role’) The TONES Ontology
repository [http://owl.cs.manchester.ac.uk/repository/] contains 219 on-
tologies, of which we selected 10 ontologies semi-randomly based on having listed
in the metrics to have a substantial amount of object properties, and being a real
ontology (more precisely: no toy or tutorial ontology, not converted from OBO,

nor an OWLized thesaurus). Some relevant data is shown in Table 1. Interesting
to observe is the plethora of object properties that are mostly in an hierar-
chy and predominantly based on changes in the domain or range. Due to space
limitations, we shall analyse here only BioTop’s inconsistent object property.

The ‘has process role’ in BioTop [11] version d.d. June 17, 2010 (last update)
is inconsistent, yet there is no explanation for it computed by currently imple-
mented explanation algorithms. We have in the ontology, among other things:
‘has process role’v‘temporally related to’, ‘has process role’v‘processual entity’×role,
‘temporally related to’ v ‘processual entity’tquality × ‘processual entity’tquality,
role v ¬quality, role v ¬‘processual entity’, Sym(‘temporally related to’).
Let us use SubProS to isolate the error and propose a revision.
– Test 1 fails, because O 6|= Rhasprocessrole v R‘temporallyrelatedto′ , as the

ranges are disjoint;
– Test 2 and 3 pass.
– Test 4 is not applicable.
– Test 5 fails, because O does not contain Sym(‘has process role’).
– Test 6-11 are not applicable.

To remedy the issue with Test 1, we have three options (see item A, above).
Thus far, ‘has process role’ has not been used in class expressions, and from
the intention described in the annotation, it suits as subproperty of ‘temporally
related to’, therefore, one opts for choice 2, being to change the range of ‘tem-
porally related to’ into ‘processual entity’ t quality t role. (The same holds for
the inverse ‘process role of’.). Second, with Test 5 failing, we have three options
to revise the flaw (see item E, above). We already decided not to change the
position of the property in the hierarchy, so we either add Sym(‘has process role’)
or Asym(‘has process role’) or remove Sym(‘temporally related to’). Ontologically,
Sym(‘temporally related to’) is certainly true and Sym(‘has process role’) certainly
false, hence Asym(‘has process role’) is the appropriate choice. After making these
changes, we run SubProS again, and no issues emerge. ♦

3 Property Chaining in OWL

Property chaining is well-known in DL research as role composition [12–14],
but in OWL its usage is more restricted and, except for a few elaborate cases
(the family relations example [1] and metamodelling rewritings [15]), is typically
used with only two object properties being chained (e.g., [5, 16–18]). The issues
mentioned and solution proposed here applies to any OWL 2 DL admissible
chain. Let us introduce an example of an undesirable deduction first.

Example 1. (DMOP ontology) The Data Mining and OPtimisation (DMOP)
ontology of the e-LICO project (http://www.e-lico.eu) v5.2 (Sept. 2011)
includes 11 property chains, including hasMainTable ◦ hasFeature v hasFeature,
where the properties have domain and range axioms hasMainTable v DataSet×
DataTable and hasFeature v DataTable× Feature, which is depicted in Fig. 1.

Table 1. Selection of some TONES Repository ontologies, retrieved on 12-3-2012 (see
Evaluation 1 for details); OP = object property; char. = object property characteristic.

Ontology No. No. of No. more Comments (partial)
of SubOPs constrained

OPs axioms by D or R by char.

DOLCE-lite 70 46 13 3 transitivity added

SAO 1.2 36 25 21 5 2 x transitivity; Test 6 fails
on has Vesicle Component

airsystem 111 56 43 2 imports DUL. ProChainS
fails

process (SWEET) 102 10 7 0

family-tree 52 25 14 2 fails Test 6 of SubProS

propreo 32 20 17 2 beyond OWL 2 DL (non-
simple prop. in max card.)

heart 29 18 9 0 many inconsistencies

mygrid- 69 39 0 3 1 x transitive added
unclassified

building 28 24 0 0 imports rcc, fails Test 5 of
Architecture SubProS (omission Asym on

properPartOf)

biotop 89 84 45 9 with transitivity; ‘has process
role’ is inconsistent, see Eval-
uation 1

Fig. 1. Graphical depiction of the property chain hasMainTable ◦ hasFeature v
hasFeature with the domain and range axioms of the two object properties.

Thus, while the range of hasMainTable and domain of hasFeature match neatly—
both are DataTable—this is not the case for their respective domains, because
DhasMainTable = DataSet and DhasFeature = DataTable. Together with the repre-
sented knowledge that DataSet is a not-disjoint sister-class of DataTable, the
combination of the domain and range axioms and the property chain causes the
deduction that DataSet v DataTable, which is wrong with respect to the subject
domain semantics. Put differently: the real flaw is either in the domain and range
axioms of either one of the two object properties, or there is a flaw in the chain
axiom. We will revisit this issue in Evaluation 4. ♦

To foster development of good quality ontologies, the ontologist should at
least be informed about probable modelling flaws and be guided in the right
direction to revise axioms in some way. This requires introduction of new con-

straints on the use of property chains in order to guarantee correct and mean-
ingful reasoning with respect to the subject domain, and explanation of the
derivations. We shall address the issues with a non-standard reasoning service,
called the Property Chain Compatibility Service (ProChainS).

3.1 The Property Chain Compatibility Service

Given Definition 1 on role inclusion axioms, we need to consider cases 3, 4, and
5 and, without loss of generality, for each OWL object property, if a domain and
range is declared, exactly one domain and range axiom is provided. Recall the
notation as in Definition 1 and 2: e.g., for Case 3, we may have a property chain
S1 ◦S2 ◦S3 v R where each property has corresponding domain and range DS1,
RS1, DS2, RS2, DS3, RS3, DR, and RR. The three cases with the constraints
that must hold are described formally in Definition 4, which concerns principally
how the domain and range of the object properties used in the property chain
expressions should relate with respect to their position in the class hierarchy.

Definition 4 (Property Chain Compatibility Service (ProChainS)). For
each set of object properties, R,S1, . . . , Sn ∈ R, R the set of OWL object prop-
erties (VOP in [1]) in OWL ontology O, and Si ≺ R with 1 ≤ i ≤ n, O adheres
to the constraints of Definition 1 (and, more generally, the OWL 2 specification
[1]), and user-defined domain and range axioms as defined in Definition 2, for
each of the property chain expression, select either one of the three cases:

Case S. Property chain pattern as S1 ◦ S2 ◦ . . . ◦ Sn v R. Test whether:
Test S-a. O |= RS1 v DS2, . . . , RSn−1 v DSn;
Test S-b. O |= DS1 v DR;
Test S-c. O |= RSn v RR;

Case RS. Property chain pattern as R ◦ S1 ◦ . . . ◦ Sn v R. Test whether:
Test RS-a. O |= RS1 v DS2, . . . , RSn−1 v DSn;
Test RS-b. O |= RR v DS1;
Test RS-c. O |= RSn v RR;

Case SR. Property chain pattern as S1 ◦ . . . ◦ Sn ◦R v R. Test whether:
Test SR-a. O |= RS1 v DS2, . . . , RSn−1 v DSn;
Test SR-b. O |= DS1 v DR;
Test SR-c. O |= RSn v DR;

An OWL property chain expression is said to be compatible iff the OWL 2 syn-
tactic constraints hold and either Case S, or Case RS, or Case SR holds.

ProChainS is tested against several domain ontologies in the following two
evaluations. To simplify the explanations, let us assume that each ontology
O contains an OWLized DOLCE taxonomy (relevant are PD v PT, ED v PT,
NPED v ED, ED v ¬PD, NPED v PED, POB v PED, and NPED v ¬POB), sub-
ject domain classes (e.g. DrugTreatment) involved in class expressions, DOLCE’s
hasPart v PT× PT and hasParticipant v PD× ED, a part-of between perdurants
(involvedIn v PD× PD), and a structuralPart v POB× POB.

Evaluation 2 (DMOP chains, Case S) The aforementioned DMOP ontology v5.2
contains a property chain realizes ◦ addresses v achieves, and several domain and
range axioms for the properties, which is depicted in Fig. 2; the classes are
all subclasses of DOLCE’s NPED. Going through the three applicable tests of
ProChainS, we obtain:
– Test S-a passes, because Rrealizes v Daddresses;
– Test S-b, “Drealizes v Dachieves?”, holds: they are both DM-Operation;
– Test S-c, “Raddresses v Rachieves?”, fails because Raddresses is the union of

DM-Task and OptimizationProblem.
Thus, the chain can be instantiated, but if the range of addresses in a class
expression is a subclass of OptimizationProblem, then all its instances will be
classified as being a member of DM-Task as well, given that the two classes are
not declared disjoint. If the two classes would have been declared disjoint, then
the ontology would have become inconsistent, with as root problem a “bad indi-
vidual” member of DM-Operation, instead of pointing to the issue with Raddresses

and Rachieves. In fact, even the current classification is undesirable: tasks and
problems are clearly distinct entities. In this case, the lead ontology developer
chose to revise the domain and range restrictions of the addresses property to
have the chain functioning as intended (included in v5.3, d.d. 10-1-2012)2. ♦

Fig. 2. The realizes ◦ addresses v achieves chain in DMOP v5.2, with the domain and
range axioms of the participating properties; the matching chain is indicated in green,
the problematic one in Arial narrow maroon font.

Evaluation 3 (Pharmacogenomics chains, Case SR) Reconsider the pharmacoge-
nomics ontology with the chain hasPart ◦ hasParticipant v hasParticipant and its
use with drugs and treatments [5], and aforementioned axioms. With ProChainS:
– Test SR-a is trivially satisfied (i = 1);
– Test SR-b “DhasPart v DhasParticipant?” does not hold because PD v PT;
– Test SR-c “RhasPart v DhasParticipant?” does not hold because PD v PT.

If O |= DrugTreatment v PT and O |= DrugGeneInteraction v PT—not included
in [5], however—then the OWL reasoners will infer they are subclasses of PD.

2 Whether this is the best option in an absolute sense is a separate issue; e.g., one can
reify the relations and have whatever is achieved be subsumed by DOLCE’s Achieve-
ment or whatever is realised be subsumed by BFO’s Realizable and add corresponding
class expressions for the participating classes.

If we add DrugTreatment v ED and DrugGeneInteraction v ED to O, then
it deduces that the two classes are inconsistent because ED v ¬PD. Dumon-
tier’s hasPart thus holds only if DrugTreatment and DrugGeneInteraction are sub-
classes of PD (perdurants or ‘processes’), hence, we can refine the property
chain into involvedIn− ◦ hasParticipant v hasParticipant. Assessing the tests for
Case SR again, then Test SR-b and Test SR-c do hold, because DinvolvedIn− =
RinvolvedIn− = DhasParticipant = PD. Thus, we now have a property chain that is
guaranteed not to lead to an inconsistency when the object properties are used
in OWL class expressions. ♦

3.2 Managing Consequences of Property Chains

As Evaluation 3 shows, the ontology may not necessarily be inconsistent when
viewed purely from a logic perspective, and, in fact, classify one or more of
the participating classes elsewhere in the taxonomy with respect to where it
was added originally (be this ontologically correct or not). Put differently, one
cannot enforce ProChainS’s outcomes on the user. Be they undesired inferences
or inconsistencies in the class hierarchy, it is important to have an explanation
that those consequences are due to the property chain.

Now that we know what and how to check whether a declared property chain
is logically and ontologically correct, it is also possible to devise support for iden-
tifying modelling defects, communicating this to the user, and suggest options
to correct it in a similar way as for SubProS. Given that it can be considered an
ontological reasoning service of one aspect of the ontology only, a less compre-
hensive approach can be taken compared to the formal foundations of computing
explanations or root justifications [6, 2], as in this case we do not have to find the
root anymore and, in fact, can make use of certain explanation features that are
implemented already. We propose the following ontology updates, in case any of
the tests fails:
A. If Test S-a, Test RS-a, or Test SR-a fails, check for any violating pair

RSi, DSi+1 whether:
(i) O |= RSi v ¬DSi+1, then raise a warning “Incompatible domain and

range of RSi, DSi+1 in the property chain expression. This is certain to
lead to an inconsistent class when the properties are used in class axioms,
and an inconsistent ontology when used in assertions about instances”,
and propose the following minimal corrections:
? Change the range of Si such that O |= RSi v DSi+1, or
? Change the domain of Si+1 such that O |= RSi v DSi+1;
? Change the property chain such that a compatible property partici-

pates;
(ii) O |= DSi+1 v RSi, then raise a warning “Incompatible domain and

range of RSi, DSi+1 in the property chain expression. This either results
in an inconsistent class when the properties are used in class axioms
and an inconsistent ontology when used in assertions about instances,
or results in a classification of DSi+1 elsewhere in the class hierarchy”,
and propose the following minimal corrections:

? Change the range of Si such that O |= RSi v DSi+1, or
? Change the domain of Si+1 such that O |= RSi v DSi+1;
? Change the property chain such that a compatible property partici-

pates;
? Let the reasoner classify DR as a subclass of DS1 and accept this

inference, provided O 6|= DR v ⊥;
B. If Test S-b fails, then raise a warning “Incompatible domain and range of

DS1, DR in the property chain expression, which will induce a classification
of DR elsewhere in the taxonomy or an inconsistency” and propose the
following options:
? Change the domain of R or S1 such that O |= DS1 v DR, or
? Let the reasoner classify DSi+1 as a subclass of RSi and accept this

inference, provided O 6|= DSi+1 v ⊥;
and similarly for the respective ranges of R and Sn in Test S-c.

C. If Test RS-b fails, then raise a warning “Incompatible domain and range of
DS1, RR in the left-hand-side of the property chain expression, which will
induce a classification of RR elsewhere in the taxonomy or in inconsistency”
and propose:
? Change the domain of S1 or range of R such that O |= DS1 v RR, or
? Let the reasoner classify RR as a subclass of DS1 and accept this infer-

ence, provided O 6|= RR v ⊥;
and similarly for the respective ranges of R and Sn in Test RS-c.

D. If Test SR-b fails then raise a warning “Incompatible domain and range of
DS1, DR in the property chain expression, which will induce a reclassification
or inconsistency of DS1” and propose the following options:
? Change the domain of S1 or R such that O |= DS1 v DR, or
? Let the reasoner classify DS1 as a subclass of RR and accept this infer-

ence, provided O 6|= DS1 v ⊥;
and similarly for the range of Sn (compared to the range of R) in Test SR-c.

E. Run ProChainS again if any changes have been made in steps A-D.
ProChainS and the management of its consequences is evaluated with the DMOP
ontology.

Evaluation 4 (Assessing DMOP chains) Recollect the property chain problem
described in Example 1 with DMOP v5.2. DMOP uses the SROIQ features,
has some 573 classes, 1021 subclass axioms, 113 object properties, and 11 prop-
erty chains. Eight chains raise a warning with ProChainS, of which 3 cause a
classification of classes elsewhere in the taxonomy due to the chain expressions.
Among others, there is hasMainTable ◦ hasFeature v hasFeature of Example 1,
which is an instance of Case SR.
– Test SR-a passes trivially, for i = 1.
– Test SR-b fails: DhasMainTable = DataSet and DhasFeature = DataTable, but

DataSet is a not-disjoint sister-class of DataTable, so O 6|= DhasMainTable v
DhasFeature, therefore Test SR-b fails and DataSet v DataTable is deduced,
which is deemed undesirable. Step D’s suggestions to revise the ontology are
either to change the domain or to accept the new classification; the DMOP

domain experts chose the first option for revision and changed the domain
of hasFeature into DataSet t DataTable, which is included in DMOP v5.3.

– Test SR-c passes, as both are DataTable.
No inconsistencies or unexpected classifications were detected with the other five
chains, mainly thanks to the absence of disjointness axioms. For instance, the
Case S described in Evaluation 2 with realizes ◦ addresses v achieves: Test S-a

and S-b pass, but S-c does not, because O 6|= RDM-TasktOptimizationProblem v
RDM-Task. A subclass of OptimizationProblem together with relevant property
expressions declared for the chain results in an undesirable deduction that it is a
subclass of DM-Task; hence, step B’s first option (for S-c) to revise the ontology
was the chosen option, i.e., removing OptimizationProblem from the range axiom
of addresses (as well as removing OptimizationStrategy from the domain axiom),
which is included as such in DMOP v5.3. ♦

Thus, SubProS and ProChainS together cover all types of modelling flaws with
their root causes and options to revise them in OWL ontologies with respect to
property hierarchies, domain and range axioms to type the property, a property’s
characteristics, and property chains.

4 Conclusions

We have identified exhaustively the type of flaws that can occur in the object
property box regarding simple property subsumption and property chaining and
proposed two compatibility services, SubProS and ProChainS, that both check
for meaningful object property hierarchies and property chaining. Thanks to
being able to identify the root cause, proposals for how to revise the ontology
were made, including the options to change the object property expressions or
the class hierarchy, and how, or accepting the deductions. This was evaluated
with several ontologies were flaws could be detected and were solved, therewith
improving the ontology’s quality.

We are currently looking into an efficient algorithm to implement SubProS and
ProChainS and a user-friendly interface to help revising flaws.

Acknowledgements The author wishes to thank Melanie Hilario for her feed-
back on the subject domain and object properties in the DMOP ontology.

References

1. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 web ontology language struc-
tural specification and functional-style syntax. W3c recommendation, W3C (27
Oct. 2009) http://www.w3.org/TR/owl2-syntax/.

2. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging OWL ontologies. In: Proceedings
of the World Wide Web Conference (WWW 2005). (2005) May 10-14, 2005, Chiba,
Japan.

3. Rector, A., Drummond, N., Horridg, e.M., Rogers, L., Knublauch, H., Stevens, R.,
Wang, H., Wroe, Csallner, C.: OWL pizzas: Practical experience of teaching OWL-
DL: Common errors & common patterns. In: Proceedings of the 14th International
Conference Knowledge Acquisition, Modeling and Management (EKAW’02). Vol-
ume 3257 of LNCS., Springer (2004) 63–81 Whittlebury Hall, UK.

4. Roussey, C., Corcho, O., Vilches-Blázquez, L.: A catalogue of OWL ontology
antipatterns. In: Proc. of K-CAP’09. (2009) 205–206

5. Dumontier, M., Villanueva-Rosales, N.: Modeling life science knowledge with OWL
1.1. In: Fourth International Workshop OWL: Experiences and Directions 2008
(OWLED 2008 DC). (2008) Washington, DC (metro), 1-2 April 2008.

6. Horridge, M., Parsia, B., Sattler, U.: Laconic and precise justifications in OWL.
In: Proc. of the 7th International Semantic Web Conference (ISWC 2008). Volume
5318 of LNCS., Springer (2008)

7. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.: Repairing unsatisfiable concepts in
OWL ontologies. In: Proceedings of ESWC’06. (2006)

8. Keet, C.M., Artale, A.: Representing and reasoning over a taxonomy of part-whole
relations. Applied Ontology 3(1-2) (2008) 91–110

9. Guarino, N., Welty, C.: An overview of OntoClean. In Staab, S., Studer, R., eds.:
Handbook on ontologies. Springer Verlag (2004) 151–159

10. Horrocks, I., Kutz, O., Sattler, U.: The even more irresistible SROIQ. Proceedings
of KR-2006 (2006) 452–457

11. Beisswanger, E., Schulz, S., Stenzhorn, H., Hahn, U.: BioTop: An upper domain
ontology for the life sciences - a description of its current structure, contents, and
interfaces to OBO ontologies. Applied Ontology 3(4) (2008) 205–212

12. Massacci, F.: Decision procedures for expressive description logics with intersec-
tion, composition, converse of roles and role identity. In: Proceedings of the 17th
International Joint Conference on Artificial Intelligence (IJCAI’2001). (2001) 193–
198

13. Schmidt-Schauss, M.: Subsumption in KL-ONE is undecidable. In: Proceedings
of 1st Conference on Knowledge Representation and Reasoning (KR’89). (1989)
421–431

14. Wessel, M.: Obstacles on the way to qualitative spatial reasoning with description
logics: some undecidability results. In Goble, C.A., McGuinness, D.L., Möller, R.,
Patel-Schneider, P.F., eds.: Proceedings of the International Workshop in Descrip-
tion Logics (DL’01). Volume 49 of CEUR WS. (2001) Stanford, CA, USA, August
1-3, 2001.

15. Glimm, B., Rudolph, S., Völker, J.: Integrated metamodeling and diagnosis in
OWL 2. In Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan,
J.Z., Horrocks, I., Glimm, B., eds.: Proceedings of the 9th International Semantic
Web Conference. Volume 6496 of LNCS., Springer (November 2010) 257–272

16. Boran, A., Bedini, I., Matheus, C.J., Patel-Schneider, P.F., Keeney, J.: Choosing
between axioms, rules and queries: Experiments in semantic integration techniques.
In: Eigth International Workshop OWL: Experiences and Directions (OWLED’11).
(2011) San Francisco, California, USA, June 5-6 2011.

17. Koutsomitropoulos, D.A., Solomou, G.D., Papatheodorou, T.S.: Metadata and
semantics in digital object collections: A case-study on CIDOC-CRM and Dublin
Core and a prototype implementation. Journal of Digital Information 10(6) (2009)

18. Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalous, A.: Ontology-based
meta-mining of knowledge discovery workflows. In Jankowski, N., Duch, W.,
Grabczewski, K., eds.: Meta-learning in Computational Intelligence. Springer
(2011) 273–315

