
The Data Mining OPtimization Ontology

C. Maria Keeta, Agnieszka Ławrynowiczb, Claudia d’Amatoc, Alexandros Kalousisd, Phong Nguyene, Raul Palmaf, Robert
Stevensg, Melanie Hilarioh

aDepartment of Computer Science, University of Cape Town, South Africa, mkeet@cs.uct.ac.za
bInstitute of Computing Science, Poznan University of Technology, Poland, agnieszka.lawrynowicz@cs.put.poznan.pl

cDepartment of Computer Science, University of Bari, Italy, claudia.damato@uniba.it
dDepartment of Business Informatics, University Of Applied Sciences, Switzerland, Alexandros.Kalousis@hesge.ch

eDepartment of Computer Science, University of Geneva, Switzerland, Phong.Nguyen@unige.ch
fPoznan Supercomputing and Networking Center, Poland, rpalma@man.poznan.pl

gSchool of Computer Science, University of Manchester, United Kingdom, robert.stevens@manchester.ac.uk
hArtificial Intelligence Laboratory, University of Geneva, Switzerland, melanie.hilario@unige.ch

Abstract

The Data Mining OPtimization Ontology (DMOP) has been developed to support informed decision-making at various choice
points of the data mining process. The ontology can be used by data miners and deployed in ontology-driven information systems.
The primary purpose for which DMOP has been developed is the automation of algorithm and model selection through semantic
meta-mining that makes use of an ontology-based meta-analysis of complete data mining processes in view of extracting patterns
associated with mining performance. To this end, DMOP contains detailed descriptions of data mining tasks (e.g., learning, feature
selection), data, algorithms, hypotheses such as mined models or patterns, and workflows. A development methodology was used
for DMOP, including items such as competency questions and foundational ontology reuse. Several non-trivial modeling problems
were encountered and due to the complexity of the data mining details, the ontology requires the use of the OWL 2 DL profile.
DMOP was successfully evaluated for semantic meta-mining and used in constructing the Intelligent Discovery Assistant, deployed
at the popular data mining environment RapidMiner.

Keywords: Ontology, OWL, data mining, meta-learning, semantic meta-mining

1. Introduction

The primary goal of the Data Mining OPtimization Ontol-
ogy (DMOP, pronounced dee-mope) is to support all decision-
making steps that determine the outcome of the data mining
(DM) process. It can be used by data mining practitioners
to inform manual selection of various ingredients (algorithms,
models, and parameters) that are used for constructing DM pro-
cesses. Most of all, DMOP has been designed to support the au-
tomation of such selections in order to optimize DM processes.

The DM process is standardized by CRISP-DM [1], a high-
level standard DM process model. According to CRISP-DM,
the DM process is composed of the following phases: business
understanding, data understanding, data preparation, modeling,
evaluation, and deployment. DMOP focuses on those three
phases that can be best automated: from data preparation to
evaluation. CRISP-DM provides only methodological frame-
work and guidelines, however, and not details on the internals
of the DM process components. Similarly, other available DM
models and ontologies (discussed in Sect. 2.2) treat DM algo-
rithms as black boxes, focusing mostly on the inputs (data) and
outputs (hypotheses) the algorithms specify. The optimization
of a DM process requires knowledge not only on how com-
ponents from its di↵erent phases interact, but also on how the
components’ internal characteristics influence the process per-
formance. Thus, despite the existence of DM domain models,

the optimization of the DM process was not possible because
the necessary additional detailed knowledge was missing. This
means that a comprehensive analysis of DM processes was not
possible, and, consequently nor was the optimization of the per-
formance of the DM process. DMOP fills this gap. It con-
ceptualizes the internals of the DM algorithms: their multiple
characteristics and building blocks, such as algorithm assump-
tions, optimization problems they solve, decision strategies, and
others. This distinguishing design feature (beyond the state of
the art) allows one to use DMOP to optimize DM processes
with semantic meta-mining [2], which is a novel form of meta-
learning.

Meta-learning [3], or learning to learn, is defined as the ap-
plication of machine learning techniques to meta-data about
past machine learning experiments with the goal of modify-
ing some aspects of the learning process in order to improve
the performance of the resulting model. Traditional meta-
learning focused only on the central (modeling) phase of the
DM process, where machine learning algorithms are executed
to build a model. However, the quality of the mined model
depends strongly also on other phases of a DM process. Tra-
ditional meta-learning regarded learning algorithms as black
boxes, correlating the observed performance of their output
(learned model) with characteristics of their input (data). How-
ever, the algorithms that have the same types of input/output

Preprint submitted to Journal of Web Semantics November 11, 2014

TBox%

DMOP%

ABox%

Operator%DB%

DMEX(DB1%%%%DMEX(DB2%%…%%%DMEX(DBk%

OWL2%

RDF%

Triple%

Store%

Formal%Conceptual%Framework%%
of%Data%Mining%Domain%

Accepted%Knowledge%of%DM%
Tasks,%Algorithms,%Operators%%

Specific%DM%ApplicaFons%
Datasets,%Workflows,%Results%

MetaHminer’s%training%data%

MetaHminer’s%prior%%

DM%knowledge%

Figure 1: Architecture of the ontology, its associated knowledge base, operator
database, and satellite triple stores, which are organised conceptually (right)
and in implementation (left), resulting in an integrated pyramid of 4 layers.

may di↵er in internal characteristics.
Semantic meta-mining is distinguished from traditional

meta-learning by the following three properties. First, it ex-
tends the meta-learning approach to meta-mining, i.e. learning
from the full DM process. Secondly, it is co-driven by knowl-
edge of DM process and its components, which are represented
in the DM ontology and knowledge base (KB), in contrast to
purely data driven traditional meta-learning. Thirdly, it breaks
open the black box by explicitly analyzing DM algorithms
along various dimensions to correlate observed performance of
learned hypotheses resulting from DM processes with both data
and algorithm characteristics. Semantic meta-mining is thus
an ontology-based, process-oriented form of meta-learning that
exploits in-depth knowledge of DM processes.

To support semantic meta-mining, DMOP contains a de-
tailed taxonomy of algorithms used in DM processes. They
are each described in terms of their underlying assumptions,
cost functions and adopted optimization strategies, generated
classes of hypotheses (models or pattern sets), and other prop-
erties. Following such a “glass box” approach makes explicit
internal algorithm characteristics. This allows meta-learners us-
ing DMOP to generalize over algorithms and their properties,
including those algorithms that it did not learn from directly.

Performing semantic meta-mining requires knowledge about
various layers of data mining experiments, which are reflected
in the DMOP architecture (see Fig. 1): a top-layer with the for-
mal conceptual framework of the data mining domain (e.g. al-
gorithm class specification), a middle layer of accepted knowl-
edge about the DM domain (e.g. particular algorithms and
their known implementations), and a bottom layer of applica-
tion specific DM data (e.g. datasets, workflows, results). The
two-tiered top layer in the figure represents DMOP (denoted
TBox) and its KB (denoted ABox), where the latter uses knowl-
edge from DMOP to model existing data mining algorithms.
Both, DMOP and its associated KB, are implemented in OWL
2. An RDF database (denoted Operator DB) contains descrip-
tions of operators, i.e., implementations of algorithms described
in DMOP and particularly those implementations that are a part

of popular DM software (such as RapidMiner1 or Weka2). The
ABox, together with the operator database, provides accepted
knowledge about DM tasks, algorithms and operators. Alto-
gether these are application-independent resources that consti-
tute the meta-miner’s prior DM knowledge. Meta-data recorded
during data mining experiments are described using DMOP and
its associated resources, and thus constitute application-specific
training and testing data for a meta-miner. They are stored in
application-dedicated RDF triple stores (denoted DMEX-DBs)
and describe datasets, workflow descriptions, and data mining
experiments.

This paper describes v5.5 of DMOP, which has 723 classes,
96 object properties, 15 data properties, and 2425 logical
axioms (4291 in total, including annotations), and has a
SROIQ(D) DL expressivity; it can be downloaded from http:

//www.dmo-foundry.org.
DMOP provides a unified conceptual framework for ana-

lyzing DM tasks, algorithms, models, datasets, workflows and
performance metrics, and their relationships, as described in
Sect. 3 whilst methodological aspects are described in Sect. 2.
To fulfil requirements of this in-depth analysis, we have en-
countered a number of non-trivial modeling issues in DMOP
development, of which the main ones are discussed in Sect. 4.
DMOP’s goals and required coverage resulted in using almost
all OWL 2 features. DMOP was successfully applied in se-
mantic meta-mining, and deployed in RapidMiner data mining
environment (download statistics provided), which is described
in Sect. 5. Conclusions are drawn in Sect. 6.

2. Ontology development

There are several methodologies for ontology development in
the literature, including Methontology [4], NeON [5], Melting
Point [6], and DiDOn [7]. Although these methodologies may
di↵er in scope and focus, they have some commonalities that
can be roughly mapped in three main stages of the ontology
development process: 1) specification with a domain analysis
(including use cases, competency questions), 2) conceptualiza-
tion, formalization, and implementation, and 3) maintenance
with refinement and evolution of the ontology. Many devel-
opers have contributed to DMOP over the years, who had dif-
ferent perspectives on extant methodologies, and had di↵erent
levels of modelling experience as to whether sticking to a single
methodology is important, and if so, a lean one or a compre-
hensive one. Therefore, the common components were taken
as reference and guideline, and tailored it to the specific micro-
level details as applicable to DMOP.

During the first stage, requirements with competency
questions—i.e., questions that an ontology should be able to
answer—were formulated (see Sect. 2.1), the use cases for se-
mantic meta-mining specified, such as providing DM expertise
to an intelligent knowledge discovery assistant (see Sect. 5.1),
and related domain ontologies were investigated and assessed

1http://rapidminer.com/
2http://www.cs.waikato.ac.nz/ml/weka/

2

to what extent they would be able to meet the requirements (see
Sect. 2.2). The outcome of that stage fed into stage two, leading
to a design of the DMOP architecture, and the subsequent on-
tology authoring by people residing at di↵erent institutions and
with overlapping and complementary knowledge of the subject
domain. The tool used was Protégé 4.x3. The ontology has
gone through various cycles of design and evaluation, including
a testing phase on meeting the requirements. Besides content
experts, also ontology experts were consulted, who provided
additional modeling guidance and solutions. The ontology is in
the third stage since late 2011, where novel methods and tools
at the level of axiom enhancement and ‘debugging’ are being
used, such as [8, 9], new sections have been added, such as on
clustering, and, as the ontology became larger and more com-
plex, more structure has been added to the ontology by aligning
it to a foundational ontology (see Sect. 2.3), which are the main
changes that resulted into a v5.3 and v5.4 of DMOP. Tidying
up the ontology merited a v5.5, which entailed, among others,
adding more annotations (n=188) and removing unused entities
(n=108). The ontology is now also available in documentation
format, generated by LODE [10].

We will highlight three salient aspects of the process fol-
lowed: the competency questions—important for the success of
deployment of the ontology; related domain ontologies to as-
sess to what extent we could reuse existing domain ontologies
in data mining; and the alignment of DMOP with a foundational
ontology.

2.1. DMOP Competency questions

The principal competency question for the DMOP was:
CQ1.1 Given a data mining task/data set, which of the valid or

applicable workflows/algorithms will yield optimal results
(or at least better results than the others)?

This competency question is decomposed into many other ques-
tions and we present a selection of them here. Coarse-grained
questions include:
CQ2.1 Given a set of candidate workflows/algorithms for a

given task/data set, which data set characteristics should
be taken into account in order to select the most appropri-
ate one?

CQ2.2 Given a set of candidate workflows/algorithms for a
task/data set, which workflow/algorithm characteristics
should be taken into account in order to select the most
appropriate one?

which can be refined into more detailed questions, such as:
CQ3.1 Are there learning algorithms that I can use on high-

dimensional data without having to go through preliminary
dimensionality reduction?

CQ3.2 Which induction algorithms should I use (or avoid)
when my dataset has many more variables than instances?

CQ3.3 Which learning algorithms perform best on microarray
or mass spectrometry data?

How they are satisfied will be discussed in Sect. 3.5 (CQ3.1)
and 5.2 (CQ1.1, CQ2.x, CQ3.2, and CQ3.3).

3http://protege.stanford.edu

2.2. Related domain ontologies
An overview of early approaches to methodical descriptions

of DM processes may be found in [2]. The majority of work
concerning formal representation of data mining in ontology
languages is aimed at the construction of DM workflows. One
strand of this research deals with the development of distributed
DM applications on the Grid [11, 12]. The pre-OWL DAMON
ontology provides a characterization of available data mining
software to enable semantic searching for appropriate DM re-
sources and tools [11]. The ontology of GridMiner Assistant
(GMA) [12] aims to support dynamic, interactive construction
of DM workflows in Grid-enabled data mining systems.

Other ontologies developed for DM workflow construction
are KDDONTO [13], KD ontology [14] and DMWF [15], all
of them using OWL as a major representation language. These
ontologies focus on modeling an algorithms’ inputs/outputs to
enable generation of valid compositions of them. For instance,
a Hierarchical Task Network (HTN) based planner eProPlan
[15], uses DMWF to plan a set of valid workflows based on
operator (algorithm implementation) preconditions and e↵ects
modeled in DMWF by means of SWRL4 rules.

Few existing DM ontologies go beyond supporting workflow
construction. OntoDM [16] aims to provide a unified frame-
work for data mining and contains definitions of the basic data
mining concepts, but lacks a particular use case. Exposé [17]
aims to provide a formal domain model for a database of data
mining experiments. It uses OntoDM together with the data
mining algorithms from DMOP, and a description of experi-
ments (algorithm setup, execution, evaluation) to provide the
basis of an experiment markup language. The primary use of
OntoDM and Exposé may thus be viewed as providing con-
trolled vocabulary for DM investigations.

None of the related ontologies was developed with the goal
of the optimization of the performance of DM processes, what
is expressed by our principal competency question. They do
not provide su�cient level of details needed to support seman-
tic meta-mining. The ontologies that are focused on workflow
construction do not model the internal characteristics of algo-
rithms (cf. competency question CQ2.2) but just their inputs
and outputs. Hence they help in answering the question how
to build a valid workflow, but not necessarily how to build an
optimal workflow.

2.3. Alignment of DMOP with a foundational ontology
There are multiple good reasons to use a foundational ontol-

ogy in theory, and it has been shown to improve the ontology
quality, understandability, and interoperability in praxis [18]. It
comes at the ‘cost’ for figuring out how to align a domain ontol-
ogy with it, and it can have implications for the language used
for the overall ontology. The principal issues from a language
viewpoint are: 1) to import or to extend, 2) if import, whether
that should be done in whole or just the relevant module ex-
tracted from the foundational ontology, 3) how to handle the
di↵erences in expressiveness that may exist—and possibly be

4http://www.w3.org/Submission/SWRL

3

specifiesInputClass

specifiesOutputClass

hasInput

hasOutput

DM-Task DM-Algorithm DM-Operator DM-Operationaddresses implements executes

achieves
realizes

DM-Workflow DM-Processexecutes

hasSubprocess

DM-Data

DM-Hypothesis

DM-Model DM-PatternSet

Figure 2: Simplified overview of the core concepts of DMOP.

required—between the foundational ontology and the domain
ontology, and 4) how to rhyme di↵erent modeling ‘philoso-
phies’ between what comes from Ontology, what is represented
in foundational ontologies, and what is permitted in OWL5.

There were two main reasons to align DMOP with a founda-
tional ontology; first, they have solutions to the modeling issue
about attributes and data properties for measurements in data
mining; second, the reuse of the foundational ontology’s object
properties (see Sect. 3.4 and Sect. 4.3). In order to determine
the most suitable foundational ontology to be used for model-
ing DMOP, both a manual assessment was conducted and the
automated recommender ONSET v1.2 [19] was used. The out-
come of this study determined DOLCE [20] as the compara-
tively ‘optimal’ foundational ontology for DMOP, given its re-
quirements. The reasons were, among others, that there is an
OWL version of it, that the modelling of measurements and
parameters needed by DMOP was solved in DOLCE with its
qualities and qualia (see Sect. 4.3), that it accommodates ab-
stract entities (part of the DMOP domain), and that some of
the object properties in DOLCE matched the ones in DMOP or
were highly usable (see Sect. 3.4). In the meantime, it has been
shown that it is not impossible to ‘swap’ DOLCE for BFO or
GFO, but most alignments will be lost in the process due to the
use of a substantial amount of entities specific to DOLCE [21].

Determining the suitable DOLCE category for alignment and
carrying out the actual mapping has been done manually (see
Sect. 3.4); some automation to suggest mappings would be a
welcome addition.

2.4. Contributing to DMOP
There are now three ways of contributing to the ontology,

each targeted to a di↵erent type of contributor. Mode 1 is the
open, bottom-up collaborative ontology development approach
for domain and/or ontology experts, which relies on Cicero Ar-
gumentation Tool6 [22], the DMOP forum for input, and the

5i.e., features that are objectionable from an ontological viewpoint, such as
class-as-instance, nominals, and data properties

6http://cicero.uni-koblenz.de/wiki/index.php/Main_Page

Editorial Board to review community input.
Mode 2: Data miners not familiar with ontology tools can

fill in predesigned templates—alike user-friendly Ontology De-
sign Content Patterns—to populate areas of the ontology with
relatively stable concept and property definitions, e.g. relat-
ing operators to their algorithms, which will be screened by the
ontology’s Editorial Board prior to integration into the target
ontology.

Mode 3: The contributor is a data mining expert and conver-
sant with ontology development who not only contributes new
data mining content, but also defines new concepts and relations
needed for content formalization, so that the domain expert on
her specific topic will impact ontology design (at least locally)
and conceptualization. The expert contributor will develop the
assigned module using her preferred ontology editor, and will
submit it to the ontology’s Editorial Board in the form of an
OWL file. After validation, the module becomes an integral
part of the ontology. These modes of collaboration are accessi-
ble from http://www.dmo-foundry.org.

3. DMOP’s contents

The core concepts of DMOP (Fig. 2) are the di↵erent ingre-
dients that go into the data mining process (DM-Process):
• The input of the process is composed of a task specifica-

tion (DM-Task) and training/test data (DM-Data) provided
by the user;
• Its output is a hypothesis (DM-Hypothesis), which can take

the form of a global model (DM-Model) or a set of local
patterns (DM-PatternSet).

Tasks and algorithms are not processes that directly manipu-
late data or models, rather they are specifications of them:
• A DM-Task specifies a DM process (or any part thereof) in

terms of the input it requires and the output it is expected
to produce.
• A DM-Algorithm is the specification of a procedure that ad-

dresses a given DM-Task, while a DM-Operator is a program
that implements a given DM-Algorithm and that is executed
by a DM-Operation.

4

• Instances of DM-Task and DM-Algorithm do no more than
specifying their input/output types (only processes have
actual inputs and outputs).

Some of the object properties of DM processes are:
• It hasInput and it hasOutput some IO-Object (DM-Data or

DM-Hypothesis);
• A process that executes a DM operator also realizes the

DM algorithm that isImplementedBy that operator;
• A DM algorithm addresses a DM task, and the process

achieves the DM task addressed by the algorithm.
Finally, a DM-Workflow is a complex structure composed of DM-
operators, while a DM-Experiment is a complex process com-
posed of operations (or operator executions). An experiment
is described by all the objects that participate in the process: a
workflow, data sets used and produced by the di↵erent data pro-
cessing phases, the resulting models, and meta-data quantifying
their performance.

3.1. DM Tasks
The top-level DM tasks listed below are defined by their in-

puts and outputs.
A DataProcessingTask receives and outputs data. Its four sub-

classes produce new data by cleansing (DataCleaningTask), re-
ducing (DataReductionTask), extracting a compact representa-
tion (DataAbstractionTask) or otherwise transforming the input
data (DataTransformationTask). These classes are further articu-
lated in subclasses representing more fine-grained tasks.

An InductionTask consumes data and produces hypotheses. It
can be either a ModelingTask or a PatternDiscoveryTask, based
on whether it generates hypotheses in the form of global mod-
els or local pattern sets. Modeling tasks can be predictive (e.g.
classification) or descriptive (e.g., clustering), while pattern dis-
covery tasks are further subdivided into classes based on the
nature of the extracted patterns: associations, dissociations, de-
viations, or subgroups.

A HypothesisProcessingTask consumes hypotheses and trans-
forms (e.g., rewrites or prunes) them to produce enhanced—less
complex or more readable—versions of the input hypotheses.
A HypothesisEvaluationTask quantifies the quality of an induced
hypothesis with respect to a specific criterion (e.g., predictive
performance). A HypothesisApplicationTask applies an induced
hypothesis to new data.

3.2. Data
As the primary resource that feeds the knowledge discovery

process, data have been a natural research focus for data miners.
Over the past decades meta-learning researchers have actively
investigated data characteristics that might explain generaliza-
tion success or failure. Fig. 3 shows the characteristics associ-
ated with the di↵erent Data subclasses (shaded boxes). Most of
these are statistical measures, such as the number of instances
or the number of features of a data set. Others are information-
theoretic measures (italicized in the figure). Characteristics in
bold font are geometric indicators of data set complexity, such
as the maximum value of Fisher’s Discriminant Ratio that mea-
sures the highest discriminatory power of any single feature in
the data set (see [23] for detailed definitions).

3.3. DM Algorithms

The top levels of the DM-Algorithm hierarchy reflect those of
the DM-Task hierarchy, since each algorithm class is defined
by the task it addresses. However, the DM-Algorithm hierarchy
is much deeper than the DM-Task hierarchy: for each leaf of
the task hierarchy, there is often a dense subhierarchy of algo-
rithms that specify diverse ways of addressing each task. For in-
stance, the leaf concept ClassificationModelingTask maps directly
onto the ClassificationModelingAlgorithm class, whose three main
subclasses—generative, discriminative, and discriminate func-
tion algorithms [24]—are illustrated here. A GenerativeAlgo-
rithm computes the class-conditional densities p(x|Ck) and the
priors p(Ck) for each class Ck. Examples of generative meth-
ods are normal (linear or quadratic) discriminant analysis and
Naive Bayes. A DiscriminativeAlgorithm, such as logistic regres-
sion, computes posterior probabilities p(Ck |x) directly to deter-
mine class membership. A DiscriminantFunctionAlgorithm builds
a direct mapping f (x) from input x onto a class label; neural
networks and support vector classifiers (SVCs) are examples of
discriminant function methods. These three DM-Algorithm fami-
lies spawn multiple levels of descendant classes that are distin-
guished by the type and structure of the models they generate.

One innovative feature of DMOP is the modeling and ex-
ploitation of algorithm properties in meta-mining. All previ-
ous research in meta-learning has focused exclusively on data
characteristics and treated algorithms as black boxes. DMOP-
based meta-mining brings to bear in-depth knowledge of algo-
rithms as expressed in their elaborate network of object prop-
erties. One of these is the object property has-quality, which
relates a DM-Algorithm to an AlgorithmCharacteristic (Fig. 4). A
few characteristics are common to all DM algorithms; examples
are characteristics that specify whether an algorithm makes use
of a random component, or handles categorical or continuous
features. Most other characteristics are subclass-specific. For
instance, characteristics such as LearningPolicy (Eager/Lazy) are
common to induction algorithms in general, whereas Tolerance-
ToClassImbalance and HandlingOfClassificationCosts make sense
only for classification algorithms.

Note that has-quality is only one among the many object
properties that are used to model DM algorithms. An induc-
tion algorithm, for instance, requires other properties to fully
model its inductive bias. Some examples are the properties: as-
sumes which expresses its underlying assumptions concerning
the training data; specifiesOutputClass which links to the class
of models generated by the algorithm, making explicit its hy-
pothesis language or representational bias; hasOptimizationProb-
lem which identifies its optimization problem and the strategies
followed to solve it, thus defining its preference or search bias.

3.4. Content alignment to DOLCE

The following subsumption axioms were added to align
DMOP with DOLCE. DOLCE’s dolce:process in the per-
durant branch has as subclasses DM-Experiment and DM-
Operation, whereas most DM classes, such as algorithm, soft-
ware, strategy, task, and optimization problem, are subclasses
of dolce:non-physical-endurant. Characteristics and parameters

5

NumberOfInstances
NumberOfCategoricalFeatures
NumberOfContinuousFeatures
NoiseSignalRatio
AverageFeatureEntropy
...

DataSet DataTable Feature FeatureValuehasTable hasFeature

DM-Data

ContinuousFeature CategoricalFeature

Instance

LabeledDataSet

CategoricalLabeledDataSet

NumberOfClasses
FeatureValueFrequenciesPerClass
ClassEntropy
MaximumFishersDiscriminantRatio
VolumeOfOverlapRegion
MaximumFeatureEfficieny
ProportionOfBoundaryPoints
...

hasValue

ProportionOfMissingValues
...

FeatureCorrelation
FeatureHOutlier
FeatureMaxiumumValue
FeatureStandardDeviation
...

FeatureClassMutualInformation
FeatureEntropy
NumberOfDistinctValues
...

ContinuousFeatureValue CategoricalFeatureValue

isa

object/data property

Figure 3: Data characteristics modeled in DMOP. Rectangles: subclasses of DM-Data class; unbounded text near the rectangles denote subclasses of the DataChar-
acteristic class associated to a DM-Data class through an OWL object property, where those in italics font are information-theoretic measures and the ones in bold
are geometric indicators.

of such entities have been made subclasses of dolce:abstract-
quality, and for identifying discrete values, classes were added
as subclasses of dolce:abstract-region. Thus, each of the four
DOLCE main branches have been used. Regarding object prop-
erties, DMOP reuses mainly DOLCE’s quality, quale, and part-
hood. DMOP’s hasPart initially had an equivalence alignment
to dolce:part, but this duplication has been removed in v5.5 to
reduce the size of the ontology. Mapping DMOP into DOLCE
had the most e↵ect on representing DM characteristics and pa-
rameters (‘attributes’), which is discussed in Sect. 4.3.

3.5. Answering competency questions

The competency questions may be divided into two groups:
those that may be already answered by the DMOP’s KB and
those that may be answered with use of the DMOP based meta-
mined model, the product of semantic meta-mining. The latter
ones that are related to performance of DM processes will be
discussed in Sect. 5. The former ones are the questions that deal
with characteristics of particular DM entities, which is illus-
trated here with competency question CQ3.1, which can be an-
swered by querying the ontology for the DM algorithms whose
characteristic ToleratesHighDimensionality has quale ‘Yes’ (i.e.,
not having to go through the dimensionality reduction). In
Protégé’s DL Query notation, this is:

DM-Algorithm and

has-quality value ToleratesHighDimensionality

The query answer obtained consists of a list of algorithm fam-
ilies (classes ClassificationRuleInductionAlgorithm, Classification-
TreeInductionAlgorithm, and SVC-Algorithm) and particular algo-
rithms of those classes (among others, C4.5, C4.5Prob, CARTc,
CHAID, DecisionStump, ID3, LogisticModelTree, NBTree, Ran-
domTree of the ClassificationTreeInductionAlgorithm class).

Once DMOP is classified by the reasoner, answering the DL
Queries (for those tested with) takes less than a minute with

HerMiT 1.3.8, else the classification time of the ontology has
to be added to the query evaluation time.

4. Modeling challenges

In this section we present the main modeling choices, issues
arisen, and solutions adopted, therewith providing some back-
ground as to why certain aspects from the overview in the pre-
ceding section are modeled the way they are.

4.1. Meta-modeling in DMOP

Right from the start of DMOP development, one of the most
important modeling issues concerning DM algorithms was to
decide whether to model them as classes or individuals. Though
DM algorithms may have di↵erent implementations, the com-
mon view is to see particular algorithms as single instances, and
not collections of instances. However, the modeling problem
arises when we want to express the types of inputs and outputs
associated with a particular algorithm. We describe this prob-
lem and how it was solved using an example, shown in Fig. 5.

Recall that: i) only processes (executions of workflows)
and operations (executions of operators) consume inputs
and produce outputs; ii) DM algorithms (as well as oper-
ators and workflows) can, in turn, only specify the type
of input or output; iii) inputs and outputs (DM-Dataset
and DM-Hypothesis class hierarchy, respectively) are mod-
eled as subclasses of IO-Object class. Then expressing a
sentence like “the algorithm C4.5 specifiesInputClass Categori-
calLabeledDataSet” became problematic. Based on our orig-
inal design (reflected in Fig. 5a), it would mean that a
particular algorithm (C4.5, an instance of the DM-Algorithm
class) specifies a particular type of input (CategoricalLabeled-
DataSet, a subclass of DM-Hypothesis class), but classes cannot
be assigned as property values to individuals in OWL.

6

BiasVarianceProfile

ClassificationProblemType
HandlingOfClassificationCosts
ToleranceToClassImbalance

...

DataProcessingAlgorithm
Characteristic

InductionAlgorithm
Characteristic

AlgorithmCharacteristic

FeatureExtractionAlgorithm
Characteristic

FeatureWeightingAlgorithm
Characteristic

RandomComponent
HandlingOfCategoricalFeatures
HandlingOfContinuousFeatures

...

CoordinateSystem
RangeOfNeighbourhood
TransformationFunction
UniquenessOfSolution

FeatureEvaluationTarget
FeatureEvaluationContext

PredictiveModelingAlgorithm
Characteristic

isa

object/data property

DM-Algorithm has-quality

...
LearningPolicy
HandlingOfInstanceWeights
ToleranceToNoise
ToleranceToMissingValues
ToleranceToIrrelevantFeatures
ToleranceToCorrelatedFeatures
ToleranceToHighDimensionalityClassificationAlgorithm

Characteristic

...

ClassificationRuleInduction
AlgorithmCharacteristic

ClassificationTreeInduction
AlgorithmCharacteristic

RuleInductionStrategy
SampleHandlingForRuleInduction

TreeBranchingFactor

Figure 4: Data mining algorithm characteristics: the main top-level classes and a selection of their attributes (subclasses of Characteristic).

a) ”C4.5 specifiesInputClass CategoricalLabeledDataSet” 8
% -
Individual Class
(instance of DM-Algorithm) (subclass of DM-Hypothesis)

b) ”C4.5 specifiesInputClass Iris” ?
% -
Individual Individual
(instance of DM-Algorithm) (instance of DM-Hypothesis)

c) ”C4.5 specifiesInputClass CategoricalLabeledDataSet” 4
% -
Individual Individual
(instance of DM-Algorithm) (instance of IO-Class)

”DM-Process hasInput some CategoricalLabeledDataSet” 4
% -
Class Class
(subclass of dolce:process) (subclass of IO-Object)

Figure 5: Illustration of a modeling problem and its solution based on metamod-
eling. a) Original design problem: expressing types of inputs/outputs associated
with an algorithm; b) Initial solution: one artificial class per each single algo-
rithm with a single instance corresponding to this particular algorithm; c) Final
solution: weak form of punning available in OWL 2; IO-Class as meta-class of
all classes of input and output objects.

Our initial solution was to create one artificial class per
each single algorithm with a single instance corresponding
to this particular algorithm, as recommended in [25] (e.g.
C4.5Algorithm class with single instance C4.5). However,
such modeling led to technical problems. Since each of the
four properties—hasInput, hasOutput, specifiesInputClass, speci-
fiesOutputClass—were assigned a common range—IO-Object—
it opened a way to make problematic ABox assertions like C4.5
specifiesInputClass Iris, where Iris is a concrete dataset. Clearly,
any DM algorithm is not designed to handle only a particular
dataset.

In our final solution, we decided to use the weak form of pun-
ning available in OWL 2 (see Fig. 5c). We had noticed that Cat-
egoricalLabeledDataSet could be perceived as an instance of a

meta-class—the class of all classes of input and output objects,
named IO-Class in DMOP. In this way, the sentence C4.5 speci-
fiesInputClass CategoricalLabeledDataSet delivered the intended
semantics. However, we also wanted to express sentences like
DM-Process hasInput some CategoricalLabeledDataSet. The use
of the same IO object (like CategoricalLabeledDataSet) once as
a class (subclass of IO-Object) and at other times as an instance
required some form of meta-modeling. In order to implement
it, we investigated some available options. This included an
approach based on an axiomatization of class reification pro-
posed in [26], where in a metamodeling-enabled version Ometa

of a given ontology O, class-level expressions from O are trans-
formed into individual assertions such that each model of Ometa

has two kinds of individuals, those representing classes and
those representing proper individuals, and meta-level rules are
encoded in class level. We chose not to follow this technique
due to its possible e�ciency issues.

Punning in our approach is only applied to leaf-level classes
of IO-Object; non-leaf classes are not punned but represented
by associated meta-classes, e.g., the IO-Object subclass DataSet
maps to the IO-Class subclass DataSetClass. Similarly, the in-
stances of DM-Hypothesis class represent individual hypothe-
ses generated by running an algorithm on the particular dataset,
while the class DM-HypothesisClass is the meta-class whose in-
stances are the leaf-level descendant classes of DM-Hypothesis.
Except for the leaf-level classes, the IO-Class hierarchy struc-
ture mimics that of the IO-Object hierarchy.

4.2. Property chains in DMOP

DMOP has 11 property chains, which have been investi-
gated in detail in [8]. The principal issues in declaring safe
property chains, i.e., that are guaranteed not to cause unsat-
isfiable classes or other undesirable deductions, are declaring
and choosing properties, and their domain and range axioms.
To illustrate one of the issues in declaring property chains, we

7

use hasMainTable � hasFeature v hasFeature: chaining requires
compatible domains and ranges at the chaining ‘points’, such as
the range of hasMainTable and domain of hasFeature, and with
the domain and range of the property on the right-hand side.
In this case, hasFeature’s domain is DataTable that is a sister-
class of hasMainTable’s domain DataSet, but the chain forces
that each participating entity in hasFeature has to be a sub-
class of its declared domain class, hence DataSet v DataTable
is derived to keep the ontology consistent. Ontologically, this
is clearly wrong, and hasFeature’s domain is now set to DataSet
or DataTable. Each chain has been analysed in a similar fashion
and adjusted where deemed necessary (see [8] for the generic
set of tests and how to correct any flaws for any property chain).

DMOP contains more elaborate property chains than the
aforementioned one. For instance, realizes � addresses v
achieves, so that if a DM-Operation realizes a DM-Algorithm
that addresses a DM-Task, then the DM-Operation achieves that
DM-Task, and with the chain implements � specifiesInputClass
v specifiesInputClass, we obtain that when a DM-Operator or
OperatorParameter implements an AlgorithmParameter or DM-
Algorithm that specifies the input class IO-Class, then the DM-
Operator or OperatorParameter specifies the input class IO-Class.

4.3. Qualities and attributes
A seemingly straightforward but actually rather intricate, and

essentially unresolved, issue is how to handle ‘attributes’ and,
in a broader context, measurements in OWL ontologies. For
instance, each FeatureExtractionAlgorithm has as an ‘attribute’ a
transformation function that is either linear or non-linear. One
might be tempted to take the easy way out and reuse the “UML
approach” where an attribute is a binary relation between a
class and a datatype; e.g., with a simplified non-DMOP intu-
itive generic example, given a data property hasWeight with
as XML data type integer, one can declare Elephant v =1
hasWeight.integer. And perhaps a hasWeightPrecise with as
data type real may be needed elsewhere. And then it appears
later on that the former two were assumed to have been mea-
sured in kg, but someone else using the ontology wants to have
it in lbs, so we would need another hasWeightImperial, and so
on. Essentially, with this approach, we end up with exactly
the same issues as in database integration, precisely what on-
tologies were supposed to solve. Instead of building into one’s
ontology application decisions about how to store the data in
the information system (and in which unit it is), one can gen-
eralize the (binary) attribute into a class, reuse the very notion
of Weight that is the same in all cases, and then have di↵er-
ent relations to both value regions and units of measurement.
This means unfolding the notion of an object’s property, like its
weight, from one attribute/OWL data property into at least two
properties: one OWL object property from the object to the ‘rei-
fied attribute’—a so-called “quality property”, represented as
an OWL class—and then another property to the value(s). The
latter, more elaborate, approach is favored in foundational on-
tologies, especially in DOLCE, GFO and YAMATO. DOLCE
uses the combination Endurant that has a qt relation to Quality
(disjoint branches) that, in turn, has a ql relation to a Region (a
subclass of the yet again disjoint Abstract branch). While this

solves the problem of non-reusability of the ‘attribute’ and pre-
vents duplication of data properties, neither ontology has any
solution to representing the actual values and units of measure-
ments. But they are needed for DMOP too, as well as complex
data types, such as an ordered tree and a multivariate series.

We considered related work on qualities, measurements and
similar proposals from foundational ontologies, to general on-
tologies, to domain ontologies for the experimental sciences
[20, 27, 28, 29, 30]. This revealed that the measurements for
DMOP are not measurements in the sense of recording the ac-
tual measurements, their instruments, and systems of units of
measurements, but more alike values for parameters, e.g., that
the TreeDepth has a certain value and a LearningPolicy is eager or
lazy, and that some proposals, such as OBOE [28], are versions
of DOLCE’s approaches7.

This being the case, we opted for the somewhat elaborate
representation of DOLCE, and added a minor extension to that
for our OWL ontology in two ways (see Fig. 6): i) DM-Data
is associated with a primitive or structured DataType (which is
a class in the TBox) through the object property hasDataType,
and ii) the data property hasDataValue relates DOLCE’s Re-
gion with any data type permitted by OWL, i.e., anyType. In
this way, one obtains a ‘chain’ from the endurant/perdurant
through the dolce:has-quality property to the quality, that goes
on through the dolce:q-location/dolce:has-quale property to re-
gion and on with the hasDataValue data property to the built-in
data type (instead of one single data property between the en-
durant and the data type). For instance, we have ModelingAlgo-
rithm v =1 has-quality.LearningPolicy, where LearningPolicy is a
dolce:quality, and then LearningPolicy v =1 has-quale.Eager-Lazy,
where Eager-Lazy is a subclass of dolce:abstract-region (that is
a subclass of dolce:region), and, finally, Eager-Lazy v 1 has-
DataValue.anyType, so that one can record the value of the
learning policy of a modeling algorithm. In this way, the ontol-
ogy can be linked to many di↵erent applications, who may even
use di↵erent data types, yet still agree on the meaning of the
characteristics and parameters (‘attributes’) of the algorithms,
tasks, and other DM endurants.

A substantial number of classes have been represented in this
way: dolce:region’s subclass dolce:abstract-region has 44 DMOP
subclasses, which represent ways of carving out discrete value
regions for the characteristics and parameters of the endurants
DM-Data, DM-Algorithm, and DM-Hypothesis. Characteristic and
Parameter are direct subclasses of dolce:abstract-quality, which
have 110 and 46 subclasses, respectively.

4.4. Modelling object properties and their inverses
Early ontology development guidelines tended to favour

adding both an object property and its inverse, e.g., re-
alizes and realised-by and declaring them inverse with the
OWL InverseObjectProperties(OPE1 OPE2), and not doing

7DOLCE materials di↵er slightly, with quale as relation in [20] and as unary
in [27] and in DOLCE-lite.owl, and Region is a combination of a (data) value
+ measurement unit (e.g. “80 kg”) in [20] to deal with attribute values/qualia
(there were no examples in [27] and the DOLCE-lite.owl)

8

DM-Data

dolce:non-physical-endurant dolce:abstract

DataType DataFormat

dolce:quality

dolce:region

dolce:abstract-regiondolce:quale

dolce:abstract-quality

anyType

hasDataValue

Characteristic Parameter

hasDataType

dolce:has-quale

dolce:particular

dolce:q-location

TableFormat

DataTable hasTableFormat

DataCharacteristic

has-quality

hasDataType

dolce:has-quality

Figure 6: Condensed section and partial representation of DMOP regarding ‘attributes’.

so counts as a pitfall in the OOPS! catalogue [9]. This practice
was also followed in DMOP up to and including v5.4; how-
ever, this was chosen purely for reasons of easier readability, for
OWL 2 has a feature ObjectInverseOf(OP) so that only one of
the two object properties su�ces in the ontology8. Given that
DMOP had many object properties and non-trivial axioms in-
volving them, and ‘slow’ classification times (10-20 minutes),
we experimented with the ObjectInverseOf(OP) feature that
a↵ected 45 properties of v5.4, which resulted in a reasoner
performance improvement of over a third [31]. This substan-
tial performance improvement outweighed the readability argu-
ment, and the explicit inverses have been removed and replaced
with respective ObjectInverseOf(OP) declarations in v5.5.

5. Usage of DMOP in semantic meta-mining

Today’s DM platforms o↵er many algorithm implementa-
tions (operators) that support di↵erent steps of the DM process.
For instance, RapidMiner (version 5.3, Community Edition) of-
fers 688 operators, either implemented by developers of Rapid-
Miner or acquired through the implementation of wrappers for
popular DM libraries such as Weka. The user of the platform
must select the appropriate operators, and their combination to
build a DM workflow best addressing her goal. To assist the
user in the design of an e↵ective workflow, Intelligent Discov-
ery Assistants (IDAs) have been proposed (a recent survey is
presented in [32]). In the following, we describe how DMOP
was used to construct the e-LICO IDA [2] that is the first IDA
capable of both planning and ranking DM workflows. We dis-
cuss the evaluation of DMOP-based semantic meta-mining and
the deployment of the e-LICO IDA in RapidMiner. Finally, we
describe some other applications of DMOP to meta-mining.

5.1. The e-LICO Intelligent Discovery Assistant

The e-LICO IDA architecture is grounded on planning-based
data analysis system [33, 32] since it uses artificial intelligence
(AI) planning to construct a set of workflows. The planned

8an axiom containing, e.g., realised-by is easier to read than the cogni-
tive jump required when reading (in Protégé notation) inverse(realizes) for
‘realised by’.

workflows are all valid for the given task, but there may po-
tentially be billions of them. Therefore, the planner-based IDA
exploits the results of semantic meta-mining to rank the work-
flows before they are presented to the user.

The architecture of the IDA is shown in Fig. 7. The user who
interacts with the IDA is required to do no more than to upload
annotated data (specifying roles and the types of the attributes)
and to select the DM goal to be achieved (e.g., prediction) (1).
Data characteristics together with the DM Workflow Ontology
(DMWF) are used by the IDA’s AI-planner to generate a set of
valid DM workflows (2). Valid workflows are those that fulfil
the user goal, take the dataset characteristic into account, and
combine operators in the way that all their pre-conditions and
post-conditions are met.

Those workflows are passed to the probabilistic ranker that
applies a default rule or a meta-mined model (3) computed by
the semantic meta-miner to rank the workflows (4) which en-
ables the AI planner to provide a list of top-ranked workflows
to the user (5). The workflows are ranked according to the esti-
mated values of the performance measure of the DM hypothe-
ses they produce (for instance, for a workflow addressing the
classification task, accuracy can be such a measure). Best work-
flows, from the functional point of view, are those that achieve
relatively best values for the measure.

The meta-mined model is computed o↵-line by the meta-
miner, which is trained on a semantic repository of meta-data
of data mining experiments (DMEX-DB) based on DMOP (6).

5.2. Evaluation of DMOP-based semantic meta-mining
The meta-mined model is induced from a DMEX-DB repos-

itory that stores meta-data concerning all aspects of past DM
experiments such as the dataset description, the workflow, the
learned model, predictions, and performance results. The
model generalizes this knowledge with use of patterns extracted
from meta-data of the collection of DM workflows; DM work-
flows are described in terms of the presence or absence of
the extracted patterns. The extracted patterns capture (struc-
tural) characteristics of the workflows and the characteristics
of the workflow components. The model employs patterns
to discriminate between configurations of dataset and work-
flow/algorithm/operator characteristics associated with good or
bad performance (cf. CQ2.x). The e�cacy of the model in

9

!"##
$%&''()#

goal
data

*

DM Workflow
Ontology (DMWF)

$)+,&,-%-./0##
1&'2()#

planned workflows

ranked workflows

3 4

5(6&'/0#
7(8&97-'()#meta-mined model

:

DM Optimization
Ontology (DMOP)

;7<=#
;>#

training meta-data
?

top ranked
workflows

@

INTELLIGENT DISCOVERY ASSISTANT

Figure 7: Intelligent Discovery Assistant; it is composed of the AI-planner,
Probabilistic Ranker and Semantic Meta-Miner. The user provides the data and
specifies the data mining goal (1). The AI-planner generates a (possibly huge)
set of valid workflows (2). The Probabilistic Ranker ranks the workflows (4)
based on the meta-mined model (3) previously computed o↵-line (6) by the
Semantic Meta-Miner. Top ranked workflows are presented to the user (5).

making predictions depends on the discriminatory power of the
characteristics used to induce it. The quality of the character-
istics represented in DMOP is thus crucial for the meta-mined
model’s e�cacy.

The e�cacy of meta-mined models that exploit DMOP has
been evaluated empirically in the following problems: predict-
ing whether a workflow is good or bad (in terms of perfor-
mance) and planning good workflows.

5.2.1. Predicting the performance of DM workflows
Building a classifier that predicts whether a workflow is in

the class of the best performing workflows or in the class of the
rest of the workflows was addressed by [2] and [34].

The authors of [2] evaluated two scenarios. In the first sce-
nario, meta-mined models exploited only data characteristics.
In the second scenario, meta-mined models exploited data char-
acteristics and patterns mined from parse trees of the DM-
workflow. The parse trees, that represented the order of exe-
cution of the workflow operators and their hierarchical relation,
were augmented using terms from DMOP in order to derive fre-
quent patterns over DMOP-based generalizations of the work-
flow components.

The experiments were conducted on the meta-data of 2275
DM experiments performed on 65 high-dimensional datasets
concerning microarray experiments on di↵erent types of can-
cer; the datasets had many more variables than instances. The
default rule (baseline) simply predicted the majority class and
had 45.38 error rate. In the two semantic meta-mining scenar-
ios, the models that were built using data and workflow char-
acteristics performed better (38.24 error rate) than those based
on data characteristics alone (40.44 error rate), and meta-mined
workflow patterns proved to be discriminatory even for new al-
gorithms and workflows (that is those not yet encountered in
previous DM experiments) [2].

The capability of DMOP based meta-mined models to pre-
dict the relative performance of DM workflows was confirmed
in [34]. This study used 1581 RapidMiner workflows solving

a predictive modeling task on 11 UCI9 datasets with various
characteristics, whose meta-data was stored in the DMEX-DB
containing over 85 million of RDF triples10. The workflow pat-
terns were represented as SPARQL queries using DMOP enti-
ties. McNemar’s test for pairs of classifiers was performed with
the null hypothesis that a classifier built using dataset charac-
teristics and a mined pattern set has the same error rate as the
baseline that used dataset characteristics and only the names of
the learning DM operators. The test confirmed that classifiers
trained using workflow patterns performed significantly better
(accuracy of 0.927) than the baseline (accuracy of 0.890).

The experiments proved that DMOP-based semantic meta-
mining was e↵ective in answering competency questions deal-
ing with performance of DM algorithms and/or DM work-
flows. Learning algorithms performing best on microarray data
(CQ3.3) and the ones that should be used or avoided when an
input dataset has many more variables than instances (CQ3.2)
were found in patterns resulting from meta-mining experiments
described in [2]. In both mentioned studies, the computed meta-
mined models proved to be e↵ective in selecting better perform-
ing workflows from among the valid ones (CQ1.1).

5.2.2. Planning well performing DM workflows
Recall from Fig. 7 that the AI Planner constructs valid DM

workflows step by step by selecting applicable operators ac-
cording to their pre/post-conditions [33]. The AI Planner alone
does not have the means to di↵erentiate between operators that
have equivalent conditions since it does not take the quality of
the resulting workflows into account. There may be several op-
erators that have fitting conditions at each step.

The authors of [35] experimentally evaluated the Semantic
Meta-Miner in the operator selection task. The goal was to se-
lect at a given step among a set of candidate operators the best
ones to build not only valid but also optimal DM workflows.
The Semantic Meta-Miner used a quality function that scored a
given plan by the quality of the operators that formed the plan.
The quality optimized the performance measure associated with
the data mining goal of the user and the input data set.

The experiments were conducted with the same set of DM
workflows as in [2]. The baseline strategy was based on the
popularity of the RapidMiner’s DM operators. The results were
statistically significantly better for the meta-mining selection
approach than for the baseline (with the average performance
improvement of around 6%). The meta-mining strategy was
better than the baseline in selecting the best workflow for 53
datasets out of 65. The results show the validity of the approach
in planning good workflows for a given learning problem.

The experimental results for the operator selection task
proved that the Semantic Meta-Miner was capable to answer
which of the applicable DM algorithms would yield best results
given a DM task and data set (CQ1.1). These were those im-
plemented by best scoring DM operators and DM algorithms
sharing similar characteristics with them, according to DMOP.

9http://archive.ics.uci.edu/ml/datasets.html
10all experimental data, datasets, and workflows, are available at http://

www.myexperiment.org/packs/421.html

10

5.3. Deployment of the Intelligent Discovery Assistant

The meta-mined model resulting from DMOP-based seman-
tic meta-mining is used in the IDA extension of RapidMiner
developed within the e-LICO project [33].

After the IDA produces the top ranked workflows and sug-
gests them to the user, he or she can execute the chosen work-
flow in RapidMiner. The data mining services required to enact
the workflow (data, text, image mining) are provided by Rapi-
dAnalytics11. RapidAnalytics also serves as a centralized data
mining experiment repository for di↵erent teams collaborating
on a given application domain. It stores all relevant meta-data
related to the execution of the workflow. The raw meta-data
from the RapidAnalytics repository can then be parsed and or-
ganized into a semantic repository of annotated experiments
(DMEX-DB) based on DMOP. In this form, the parsed meta-
data can be exploited by the meta-miner that uses DMEX-DB
as the system’s long-term memory and the source of training
data.

The RapidMiner IDA Extension is available in the Rapid-I
marketplace12 since 1 September 2012. In March 2014, this
RapidMiner plugin has been downloaded 8751 times and was
bookmarked 23 times, and it continues to attract attention, with
10046 downloads and 52 bookmarks in November, 2014. It is
among the Top Favourites listed in the Rapid-I marketplace.

The workflows generated by the IDA can also be executed in
the Taverna [36] IDA extension using an instance of a RapidAn-
alytics server providing RapidMiner operators as web-services.
The user also can upload the workflow generated by the IDA to
myExperiment, a web portal for sharing workflows and other
resources [37]. This feature is available in both RapidMiner
and Taverna.

5.4. Other applications of DMOP to meta-mining

DMOP’s conceptualization of data mining algorithms has
been used elsewhere for constructing data mining experiment
databases. Experiment databases [38, 39] provide a platform
for DM researchers and practitioners for storing the thousands
of their data mining experiments in a central repository and
allowing them to exploit meta-knowledge of the experiments.
This empirical data is linked to known theoretical characteris-
tics of algorithms and datasets to provide insight into the behav-
ior of learning algorithms on particular datasets, and the e↵ect
of parameters and data preprocessing, for which fine-grained
knowledge, as represented in DMOP, was necessary. The stored
meta-data can be queried (e.g., about the very building blocks
of learning algorithms), or it can be mined to build predictive
models of algorithm performance on particular datasets, or to
answer why algorithms work or fail on certain datasets.

Another notable application of DMOP to meta-mining in-
vestigations, described in [40], is in the domain of Quantita-
tive Structure-Activity Relationship (QSAR) studies. QSAR
modeling is an important step in drug discovery processes,

11http://rapid-i.com/content/view/182/196/
12http://marketplace.rapid-i.com/UpdateServer/faces/

product_details.xhtml?productId=rmx_ida

and a QSAR modeling algorithm is typically a DM algorithm.
DMOP’s terms dealing with algorithm parameters, and dataset
characteristics were used to annotate QSAR studies. The
goal of that annotation is to run meta-learning studies, “meta-
QSAR”, to determine what combinations of datasets, DM algo-
rithms, and drug targets work best and subsequently to better
apply existing QSAR methods.

6. Conclusions

In this paper, we have presented the DMOP ontology. It
provides a conceptual framework for analyzing data mining
domain–DM tasks, algorithms, models, datasets, workflows,
performance metrics, and their relationships–in a way that en-
ables optimizing DM processes.

While modeling data mining knowledge in DMOP, we have
encountered a number of non-trivial modeling issues. These
include: i) the hurdle of relating instances to classes and using
classes as instances (and vv.), which has been solved by exploit-
ing the weak form of metamodeling with OWL’s punning avail-
able in OWL 2; ii) finding and resolving in a systematic way
the undesirable deductions caused by property chains; iii) rep-
resentation of ‘attributes’, where its solution is ontology-driven
yet merged with OWL’s data property and built-in data types
to foster their reuse across applications; iv) linking to a founda-
tional ontology. In order to properly solve these issues, we have
used almost all of OWL 2’s features. The resulting ontology is
highly axiomatized and complex in comparison to many state-
of-art domain ontologies, especially those whose primary goal
is to provide common vocabulary for annotation of resources.

We described the evaluation of DMOP-based semantic meta-
mining in two tasks: predicting the performance of DM work-
flows and planning well performing DM workflows. Finally,
we described the usage of DMOP for constructing the Intelli-
gent Discovery Assistant deployed at the leading data mining
environment RapidMiner.

The deep modeling of the DM domain in DMOP has moved
forward the field of meta-learning: traditional meta-learning
has been lifted to the level of semantic meta-mining; that is, to
an ontology-based form of meta-learning capable of analyzing
and optimizing whole DM processes.

Acknowledgements. This work was supported by the Euro-
pean Union within FP7 ICT project e-LICO (Grant No 231519).
Agnieszka Lawrynowicz acknowledges the support from the
PARENT-BRIDGE program of Foundation for Polish Science,
cofinanced from European Union, Regional Development Fund
(Grant No POMOST/2013-7/8). We thank all our partners
and colleagues who have contributed to the development of
DMOP: Huyen Do, Simon Fischer, Dragan Gamberger, Lina
Al-Jadir, Simon Jupp, Petra Kralj Novak, Babak Mougouie,
Anze Vavpetic, Jun Wang, Derry Wijaya, Adam Woznica.

References

[1] Shearer, C.. The CRISP-DM model: The new blueprint for data mining.
Journal of Data Warehousing 2000;5(4):13–22.

11

[2] Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A..
Ontology-based meta-mining of knowledge discovery workflows. In:
Meta-Learning in Computational Intelligence; vol. 358 of Studies in Com-
putational Intelligence. Springer; 2011, p. 273–315.

[3] Jankowski, N., Duch, W., Grabczewski, K., editors. Meta-Learning in
Computational Intelligence; vol. 358 of Studies in Computational Intelli-
gence. Springer; 2011.

[4] Fernández, M., Gómez-Pérez, A., Pazos, A., Pazos, J.. Building a
chemical ontology using METHONTOLOGY and the ontology design
environment. IEEE Expert 1999;January/February:37–46.

[5] Suarez-Figueroa, M.C., de Cea, G.A., Buil, C., Dellschaft, K.,
Fernandez-Lopez, M., Garcia, A., et al. NeOn methodology for build-
ing contextualized ontology networks. NeOn Deliverable D5.4.1; NeOn
Project; 2008.

[6] Garcia, A., O’Neill, K., Garcia, L.J., Lord, P., Stevens, R., Corcho, O.,
et al. Developing ontologies within decentralized settings. In: Semantic
e-Science. Annals of Information Systems 11. Springer; 2010, p. 99–139.

[7] Keet, C.M.. Transforming semi-structured life science diagrams into
meaningful domain ontologies with DiDOn. Journal of Biomedical In-
formatics 2012;45:482–494.

[8] Keet, C.M.. Detecting and revising flaws in OWL object property ex-
pressions. In: 18th International Conference on Knowledge Engineering
and Knowledge Management (EKAW’12); vol. 7603 of LNAI. Springer;
2012, p. 252–266. Oct 8-12, Galway, Ireland.

[9] Poveda-Villalón, M., Suárez-Figueroa, M.C., Gómez-Pérez, A.. Validat-
ing ontologies with OOPS! In: 18th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW’12); vol. 7603
of LNAI. Springer; 2012, p. 267–281. Oct 8-12, Galway, Ireland.

[10] Peroni, S., Shotton, D., Vitali, F.. Tools for the automatic generation
of ontology documentation: A task-based evaluation. Int J on Semantic
Web and Info Sys 2013;9(1):21–44.

[11] Cannataro, M., Comito, C.. A data mining ontology for grid program-
ming. In: Proceedings of 1st International Workshop on Semantics in
Peer-to-Peer and Grid Computing. 2003, p. 113–134.

[12] Brezany, P., Janciak, I., Tjoa, A.M.. Ontology-based construction of
grid data mining workflows. In: Data Mining with Ontologies. Hershey;
2007, p. 182–210.

[13] Diamantini, C., Potena, D., Storti, E.. Supporting users in KDD pro-
cesses design: a semantic similarity matching approach. In: Proceedings
of the Planning to Learn Works. 2010, p. 27–34–134.

[14] Záková, M., Kremen, P., Zelezný, F., Lavrac, N.. Automat-
ing knowledge discovery workflow composition through ontology-based
planning. IEEE Transactions on Automation Science & Engineering
2011;8(2):253–264.

[15] Kietz, J., Serban, F., Bernstein, A., Fischer, S.. Data mining workflow
templates for intelligent discovery assistance and auto-experimentation.
In: Proc of the ECML/PKDD’10 Workshop on Third Generation Data
Mining (SoKD’10). 2010, p. 1–12.

[16] Panov, P., Dzeroski, S., Soldatova, L.N.. OntoDM: An ontology of
data mining. In: ICDM Workshops. IEEE Computer Society; 2008, p.
752–760.

[17] Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.. Experiment
databases - a new way to share, organize and learn from experiments.
Machine Learning 2012;87(2):127–158.

[18] Keet, C.M.. The use of foundational ontologies in ontology development:
an empirical assessment. In: Proceedings of the 8th Extended Semantic
Web Conference (ESWC’11); vol. 6643 of LNCS. Springer; 2011, p. 321–
335. Heraklion, Crete, Greece, 29 May-2 June, 2011.

[19] Khan, Z., Keet, C.M.. ONSET: Automated foundational ontology se-
lection and explanation. In: 18th International Conference on Knowl-
edge Engineering and Knowledge Management (EKAW’12); vol. 7603
of LNAI. Springer; 2012, p. 237–251. Oct 8-12, Galway, Ireland.

[20] Masolo, C., Borgo, S., Gangemi, A., Guarino, N., Oltramari, A..
Ontology library. WonderWeb Deliverable D18 (ver. 1.0, 31-12-2003).;
2003. Http://wonderweb.semanticweb.org.

[21] Khan, Z., Keet, C.. Feasibility of automated foundational ontology
interchangeability. In: Janowicz, K., et al., editors. 19th International
Conference on Knowledge Engineering and Knowledge Management
(EKAW’14); vol. 8876 of LNAI. Springer; 2014, p. 225–237. 24-28 Nov,
2014, Linkoping, Sweden.

[22] Dellschaft, K., Engelbrecht, H., Monte Barreto, J., Rutenbeck, S.,

Staab, S.. Cicero: Tracking design rationale in collaborative ontology
engineering. In: Bechhofer, S., et al., editors. Proceedings of the 5th
European Semantic Web Conference (ESWC’08); vol. 5021 of LNCS.
Springer; 2008, p. 782–786. Tenerife, Spain, June 1-5, 2008.

[23] Ho, T.K., Basu, M.. Measures of geometrical complexity in classification
problems. In: Data Complexity in Pattern Recognition; chap. 1. Springer;
2006, p. 3–23.

[24] Bishop, C.. Pattern Recognition and Machine Learning. Springer; 2006.
[25] Noy, N., Uschold, M., Welty, C.. Representing Classes As Prop-

erty Values on the Semantic Web. 2005. W3C Working Group Note,
http://www.w3.org/TR/swbp-classes-as-values/; URL http://www.w3.

org/TR/swbp-classes-as-values/.
[26] Glimm, B., Rudolph, S., Völker, J.. Integrated metamodeling and

diagnosis in OWL 2. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P.,
Mika, P., Zhang, L., Pan, J.Z., et al., editors. Proceedings of the 9th
International Semantic Web Conference; vol. 6496 of LNCS. Springer;
2010, p. 257–272.

[27] Masolo, C., Borgo, S.. Qualities in formal ontology. In: Proceedings
of the Workshop on Foundational Aspects of Ontologies (FOnt 2005).
2005,Koblenz, Germany, Sept. 2005.

[28] Saunders, W., Bowers, S., O’Brien, M.. Protégé extensions for
scientist-oriented modeling of observation and measurement semantics.
In: Proceedings of the 6th Workshop on OWL: Experiences and Direc-
tions (OWLED 2011); vol. 796 of CEUR-WS. 2011,.

[29] Bowers, S., Madin, J.S., Schildhauer, M.P.. A conceptual modeling
framework for expressing observational data semantics. In: Proceedings
of the International Conference on Conceptual Modeling (ER’06); vol.
5231 of LNCS. Springer; 2008, p. 41–54.

[30] Hodgson, R., Keller, P.J.. QUDT - quantities, units, dimensions and data
types in OWL and XML. Online; 2011. Http://www.qudt.org/.

[31] Keet, C., d’Amato, C., Khan, Z., Lawrynowicz, A.. Exploring reason-
ing with the DMOP ontology. In: Bail, S., Glimm, B., Jiménez-Ruiz,
E., Matentzoglu, N., Parsia, B., Steigmiller, A., editors. 3rd Workshop
on Ontology Reasoner Evaluation (ORE’14); vol. 1207 of CEUR-WS.
CEUR-WS; 2014, p. 64–70. July 13, 2014, Vienna, Austria.

[32] Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.. A survey of intel-
ligent assistants for data analysis. ACM Comput Surv 2013;45(3):31:1–
35.

[33] Nguyen, P., Kalousis, A., Hilario, M.. A meta-mining infrastructure to
support kd workflow optimization. In: Proc of the Workshop on Planning
to Learn and Service-Oriented Knowledge Discovery. 2011,.

[34] Ławrynowicz, A., Potoniec, J.. Pattern based feature construction in
semantic data mining. Int J Semantic Web Inf Syst 2014;10(1):27–65.

[35] Nguyen, P., Kalousis, A., Hilario, M.. Experimental evaluation of the
e-LICO meta-miner. In: Proceedings of the International Workshop on
Planning to Learn (PlanLearn 2012); vol. 950 of CEUR-WS. 2012,.

[36] Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D.,
Owen, S., et al. The taverna workflow suite: designing and executing
workflows of web services on the desktop, web or in the cloud. Nucleic
Acids Research 2013;41(W1):W557–W561.

[37] De Roure, D., Goble, C., Stevens, R.. The design and realisation of the
myexperiment virtual research environment for social sharing of work-
flows. Future Generation Computer Systems 2009;25:561–567.

[38] Vanschoren, J., Blockeel, H., Pfahringer, B., Holmes, G.. Experiment
databases. A new way to share, organize and learn from experiments.
Machine Learning 2012;87(2):127–158.

[39] Vanschoren, J.. Meta-learning architectures. Collecting, organizing and
exploiting meta-knowledge. In: Grabczewski, K., Wlodzislaw, D.,
Jankowski, N., editors. Meta-Learning in Computational Intelligence;
vol. 358 of Studies in Computational Intelligence. Springer; 2011, p. 117–
155.

[40] Panov, P., Soldatova, L., Džeroski, S.. Ontology of core data mining
entities. Data Min Knowl Discov 2014;28(5-6):1222–1265.

12

