Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions

Strengths and limitations of different types of declarative modelling languages

C. Maria Keet

Department of Computer Science, University of Cape Town, South Africa https://sit.uct.ac.za mkeet@cs.uct.ac.za

> DAMA Southern Africa, online 5 August 2024

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions
Outline				

- 2 Conceptual data models
- Ontologies
- Assessing models

Introducing models ●೦೦೦೦೦೦೦೦೦	Conceptual data models	Ontologies	Assessing models	Conclusions
Outline				

- 2 Conceptual data models
- 3 Ontologies
- Assessing models

5 Conclusions

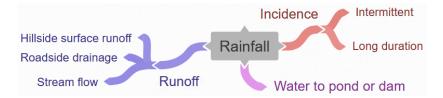
Introducing models o●ooooooooo	Conceptual data models	Ontologies	Assessing models	Conclusions
Models galo	re			

- Physical model; e.g., Lego brick house
- Mathematical model; e.g., climate change model, bacterial growth in cheese-making
- Machine learning & cs.; e.g., data-driven spellchecker, LLM
- Conceptual models; e.g., concept maps, declarative models of mathematical models, knowledge graphs, thesauri, UML diagrams, ontologies

Introducing models o●ooooooooo	Conceptual data models	Ontologies	Assessing models	Conclusions
Models galo	re			

- Physical model; e.g., Lego brick house
- Mathematical model; e.g., climate change model, bacterial growth in cheese-making
- Machine learning & cs.; e.g., data-driven spellchecker, LLM
- Conceptual models; e.g., concept maps, declarative models of mathematical models, knowledge graphs, thesauri, UML diagrams, ontologies
- ⇒ Gentle, mostly non-technical introduction to conceptual models in computing
- \Rightarrow Running example about with rain (dance in the book)

Beginnings: brainstorming about a topic with mind maps


- Mind maps are easy to draw
- and look pretty

Conceptual data models

Ontologies

Beginnings: brainstorming about a topic with mind maps

- Mind maps are easy to draw
- and look pretty

Conceptual data models

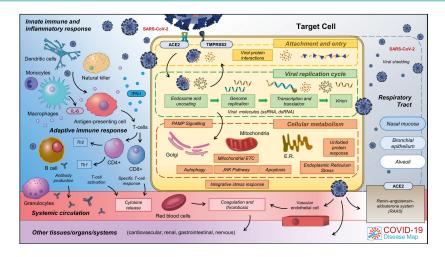
Ontologies

Assessing models

Conclusions

Mind maps raise more questions than they answer

- What's a good mind map?
- What's the *right size* of a mind map?
- What's the *meaning* of a connecting line?
- How useful is it to make one (and for what purpose)?
- How to *develop* a good one?

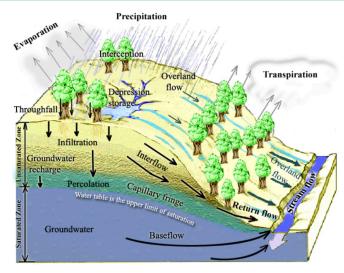

Introducing	models
00000000	000

Partial solution: biological models

- De facto more or less (or un-)regulated domain specific language
- The lines and arrows have meaning
- There are icons to use, with meaning
- There are written or unwritten rules on how to put them together and how to read them

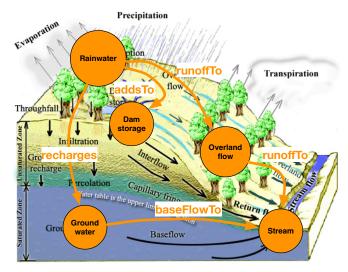
Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions
0000000000				

COVID-19


Conceptual data models

Ontologies

Assessing models

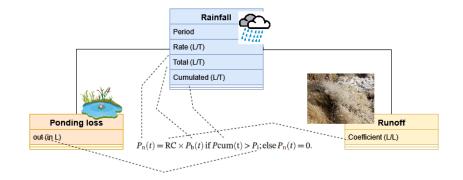

Conclusions

Physical Processes involved in Runoff Generation

[Tarboton(2003)]

Towards a knowledge graph

adapted from [Tarboton(2003)]


Conceptual data models

Ontologies

Assessing models

Conclusions

Annotating hydrological models example

formula from [Chahinian et al.(2023)]

Introducing	models
00000000	000

Conceptual data models

Ontologies

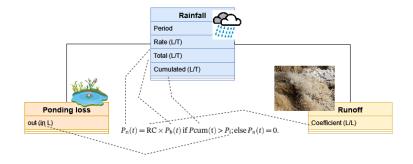
Assessing models

Conclusions

Limitations of the domain models

- There are very many notations to learn
- Objects and arrows, but no way to specify how many outgoing arcs there may be
- Limited computational use among models (e.g.: do they overlap or contradict?)
- Proliferation of incompatible modelling tools that are cumbersome to maintain

Introducing	models
00000000	000


Conceptual data models

Ontologies

Assessing models

Conclusions

Rainfall questions - loose ends in the model

• What are the names of the relations? the constraints? The relevant attributes? And their data types?

Introducing models	Conceptual data models ●○○○○○○○	Ontologies	Assessing models	Conclusions
Outline				

- 2 Conceptual data models
- 3 Ontologies
- Assessing models

5 Conclusions

Conceptual data models

Ontologies

Assessing models

Conclusions

Solutions to limitations of the domain models

- Devise one notation for all subject domains
- More expressive (more features) than only objects and arrows
- Computational support
- (Try to) Standardise to make tooling development 'economically' viable

Conceptual data models

Ontologies

Assessing models

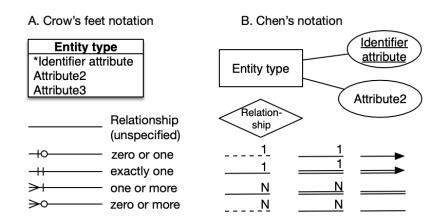
Conclusions

Solutions to limitations of the domain models

- Devise one notation for all subject domains
- More expressive (more features) than only objects and arrows
- Computational support
- (Try to) Standardise to make tooling development 'economically' viable
- \Rightarrow Conceptual data models

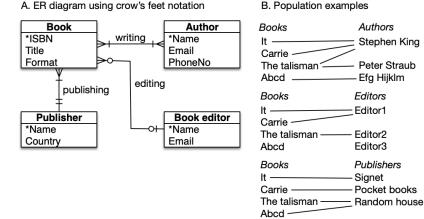
Introducing models	Conceptual data models ००●०००००	Ontologies	Assessing models	Conclusions
Conceptual	data models			

- A class of models that capture the information about the data that are to be stored in the prospective software system (and possibly manipulated)
- There are several conceptual data modelling language families and notations


Conceptual data models

Ontologies

Assessing models


Conclusions

Conceptual data models: Examples of language elements

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions

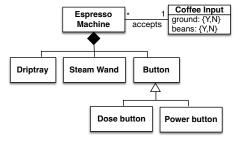
Conceptual data models: An example

Convert automatically between EER, UML, ORM, choose preferred notation: Braun G, Fillottrani PR, Keet CM. A Framework for Interoperability Between Models with Hybrid Tools, J of Intelli-Inf. Sys. (2023.) $2 \rightarrow 3$, $2 \rightarrow$

^{18/40}

Conceptual data models

Ontologies

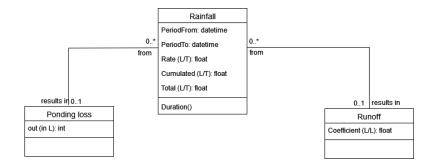

Assessing models

Conclusions

The espresso example of the talk's announcement

... compared to software design for espresso machines

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・


Conceptual data models

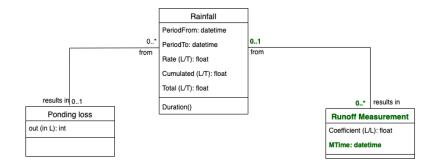
Ontologies

Assessing models

Conclusions

Rainfall, again — UML style

- Convert UML class diagram (semi-)automatically into program code
- Easier to communicate with other domain experts and programmers what's in the code
- Easier to reuse with other math formula that use same entities


Conceptual data models

Ontologies

Assessing models

Conclusions

Rainfall, again — UML style

- Convert UML class diagram (semi-)automatically into program code
- Easier to communicate with other domain experts and programmers what's in the code
- Easier to reuse with other math formula that use same entities

Conceptual data models ○○○○○○● Ontologies

Limitations of conceptual data model models in theory or practice

- For one specific application only need to re-do it for each application, integration issues
- Solutions to recurring modelling issues re-invented time and again (and same mistakes made)
- Mostly informal diagrams that suffer from ambiguity (intentionally or not)
- Limited authoring guidelines¹
- Some quality control mechanisms

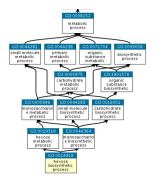
¹ Mainly the CSDP for ORM [Halpin(2001)]; an example for EER: http://www.meteck.org/modellingbook/DanceSchoolExample.html; TDD proposal for UML [Tort and Olivé(2010)]

Introducing models	Conceptual data models	Ontologies ●0000000000	Assessing models	Conclusions
Outline				

- 2 Conceptual data models
- Ontologies
- Assessing models

5 Conclusions

Conceptual data models


Ontologies

Solving limitations of conceptual data model models with ontologies

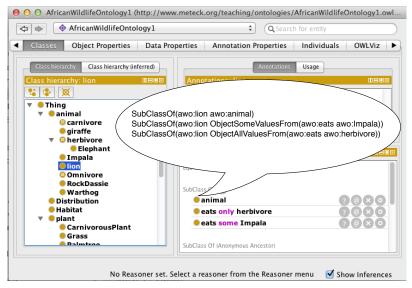
- 'Model' for a subject domain, of use across multiple applications for use, reuse, integration
- Provides solutions to recurring modelling issues, saves re-inventing the wheel
- Logic-based, as precise as permitted within the language
- Multiple quality control mechanisms (theories, methods, techniques, tools)

Introducing models	Conceptual data models	Ontologies ○○●○○○○○○○○	Assessing models	Conclusions
An ontology				

(informally) **an ontology** is an engineering artefact in machine-processable format, which contains the entity types, their relationships, and constraints that hold over them of a particular subject domain.

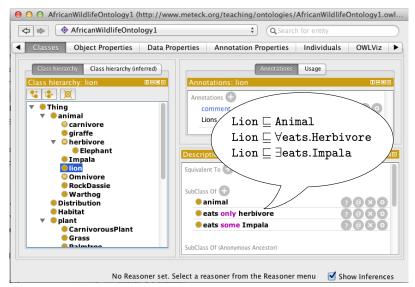
Fragment of the Gene Ontology, graphically

http://geneontology.org/docs/ontology-documentation/

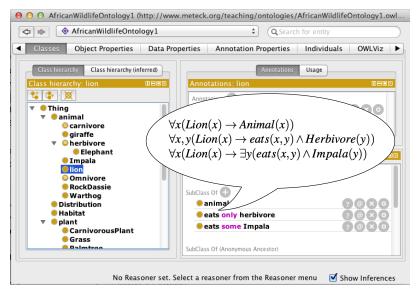

Conceptual data models

Ontologies

Assessing models


Conclusions

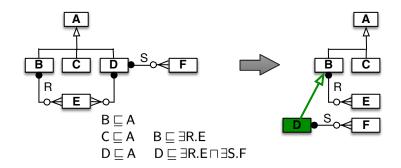
Another rendering of an ontology & behind the GUI



25 / 40

... and underlying that serialisation

... and underlying that serialisation


Conceptual data models

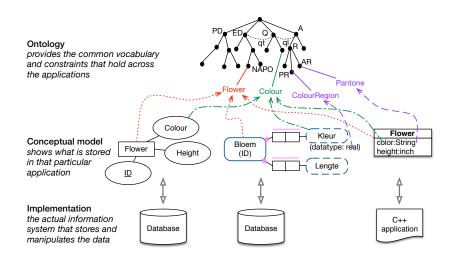
Ontologies

Assessing models

Conclusions

A note on automated reasoning – Illustration

<ロト < 回ト < 巨ト < 巨ト < 巨ト 三日日 のへの 27/40


Conceptual data models

Ontologies

Assessing models

Conclusions

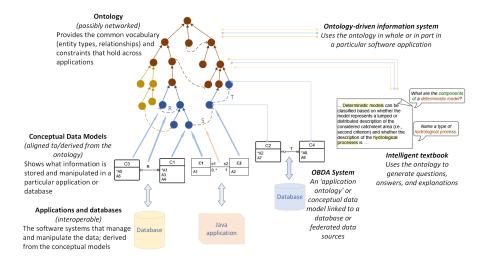
Original idea of an ontology's use

Introducing models	Conceptual data models	Ontologies ○○○○○○○●○○○	Assessing models	Conclusions
Why ontolo	gies?			

- For their own sake, possible future use
- Representing a scientific theory precisely
- Facilitating communication among humans, between software applications or modules in a complex system
- Used for and in many different ontology-driven information systems: a.o., data integration, recommender systems, NLP, textbook enhancements, Q&A systems)

Introducing models	Conceptual data models	Ontologies ○○○○○○●○○○	Assessing models	Conclusions
Why ontolo	gies?			

- For their own sake, possible future use
- Representing a scientific theory precisely
- Facilitating communication among humans, between software applications or modules in a complex system
- Used for and in many different ontology-driven information systems: a.o., data integration, recommender systems, NLP, textbook enhancements, Q&A systems)
- Examples: finding 'new' knowledge (bio-chemistry) [Wolstencroft et al.(2007)] save research time (ecology) [Madin et al.(2008)] semantic comparisons of text (healthcare) [Reese et al.(2023)], energy-optimised building system control [Pruvost and Enge-Rosenblatt(2022)], digital humanities [Calvanese et al.(2016)] etc.


Conceptual data models

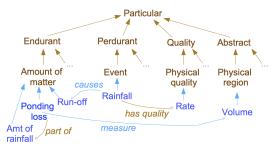
Ontologies

Assessing models

Conclusions

Orchestration of ontologies and applications

Introducing models


Conceptual data models

Ontologies

Assessing models

Conclusions

Rainfall: sample sketch and some axioms for an ontology

- Rainfall \sqsubseteq Event ('rainfall is an event'),
- *Rainfall* $\sqsubseteq \forall hasQuality.Rate$ ('each rainfall event has as quality only a Rate'),
- *Rainfall* $\sqsubseteq \exists causes.Runoff$ ('each rainfall event causes some amount of runoff' *),
- *Rainfall* $\sqsubseteq \forall causes.(PondingLoss \sqcup Runoff)$ ('each rainfall event causes only an amount of ponding loss or runoff'),
- $PondingLoss \sqsubseteq = 1 measure. Volume ('each ponding loss has exactly one measure of volume' (of the loss)),$

Introducing models	Conceptual data models	Ontologies ○○○○○○○○○○	Assessing models	Conclusions
Limitations	of ontologies?			

Introducing models	Conceptual data models	Ontologies ○○○○○○○○○●	Assessing models	Conclusions
Limitations	of ontologies?			

- Yes, there are...
- ... but not part of this talk (time constraints)

Introducing models	Conceptual data models	Ontologies ○○○○○○○○○	Assessing models	Conclusions
Limitations	of ontologies?			

- Yes, there are...
- ... but not part of this talk (time constraints)
- A proposed solution is Ontology, a branch in philosophy
 - Investigates the nature of things, on paper mostly
 - e.g., general things: what is parthood, causality, role, function of an object, stuff?
 - Then use that to help figuring out domain entities; e.g., whether a software application is a whole, what a pandemic is, etc.

Introducing models	Conceptual data models	Ontologies	Assessing models ●00000	Conclusions
Outline				

Introducing models

2 Conceptual data models

3 Ontologies

5 Conclusions

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions
			00000	

Feature-based comparison

Table 7.1	Comparison of ty	pes of models along a set of p	properties

	Feature					
Model type	Main aim or function	Where used (mainly)	Development methodologies	Software assistance	Language freedom	Precision
Mind Maps	Basic structuring of a topic	Education, business	A little	Yes, many drawing tools	Limited	Low
Biology models	Visualise biology knowledge (structures and processes)	Biology research, textbooks	No	Drawing tools, some runtime usage (simulations)	Ranges from self-imposed to complete freedom	Low/ medium
Conceptual data models	Capture characteristics of data to be stored and processed in an program	Analysis and design stage of database and program development	Yes	Drawing tools, limited runtime usage	Ranges from standardised languages to partial freedom to design one	Medium
Ontologies	Represent knowledge of a subject domain precisely and in a computer processable way	Computing and IT (Data integration, Enterprise systems, Web search, etc.)	Yes, many	Editors (diagram, text), runtime usage	Ranges from standardised languages to partial freedom to design one	High (but medium/ low is possible)
Ontology	Characterise one small aspect of interest precisely and in much detail	Research	No	No	Yes, can define as one goes along	High/ Very high

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions
Task-based	comparison			

- Which model about rainfall was the most useful?
- For what?

Introducing models	Conceptual data models	Ontologies	Assessing models ○○●○○○	Conclusions
Task-based	comparison			

- Which model about rainfall was the most useful?
- For what?
- Comparison in the book, on learning a textbook page about labour relations:
 - ⇒ Conceptual data model as 'winner', unless critical inquiry (higher up in Bloom's taxonomy) is the aim

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions
Model qualit	xy, for all types			

- Syntax checking is technically straightforward to implement
- For each type: what is a good model can be answered only partially, typically only one aspect at a time (scientific experiments with humans are limited)
- Most theories, methods, and techniques are available for ontologies only
- Certain things we don't know yet how to check for

Introducing models	Conceptual data models	Ontologies	Assessing models ○○○○●○	Conclusions
Bias in mo	delling?			

- Bias is a problem in data-driven AI technologies; does declarative modelling have the same problems?
- No, but it's also not necessarily free of it
- It's currently not part of the modelling guidelines, methods, and methodologies

Introducing models	Conceptual data models	Ontologies	Assessing models ○○○○●○	Conclusions
Bias in mod	lelling?			

- Bias is a problem in data-driven AI technologies; does declarative modelling have the same problems?
- No, but it's also not necessarily free of it
- It's currently not part of the modelling guidelines, methods, and methodologies
- Mostly conscious modelling decisions during the modelling processes
- Albeit (likely?) not with malicious intent acts of omissions cf. acts of commission
- \Rightarrow Where did it happen? Where could it slip in?

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions

- Property manipulations
 - Which properties record, which one to exclude (AC/heating calculations to include computers in a room, insulation, ceiling height (EU), or not (USA))
 - Setting the permissible value range (e.g., hypertension, alcohol use disorder)

Introducing models	Conceptual data models	Ontologies	Assessing models ○○○○○●	Conclusions

- Property manipulations
 - Which properties record, which one to exclude (AC/heating calculations to include computers in a room, insulation, ceiling height (EU), or not (USA))
 - Setting the permissible value range (e.g., hypertension, alcohol use disorder)
- Aggregation or granularity
 - Terrorism databases (bombing targets: just Government Building or subclassing with, say, Hospital, State's Generic Medicine Manufacturing Plant, Water Purification Plant, Military base, and Homeland security torture bunker)

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions

- Property manipulations
 - Which properties record, which one to exclude (AC/heating calculations to include computers in a room, insulation, ceiling height (EU), or not (USA))
 - Setting the permissible value range (e.g., hypertension, alcohol use disorder)
- Aggregation or granularity
 - Terrorism databases (bombing targets: just Government Building or subclassing with, say, Hospital, State's Generic Medicine Manufacturing Plant, Water Purification Plant, Military base, and Homeland security torture bunker)
- Familiarity bias, own culture's narrow assumptions (e.g., composition of a person's name, family vs household)

Introducing models	Conceptual data models	Ontologies	Assessing models ○○○○○●	Conclusions

- Property manipulations
 - Which properties record, which one to exclude (AC/heating calculations to include computers in a room, insulation, ceiling height (EU), or not (USA))
 - Setting the permissible value range (e.g., hypertension, alcohol use disorder)
- Aggregation or granularity
 - Terrorism databases (bombing targets: just Government Building or subclassing with, say, Hospital, State's Generic Medicine Manufacturing Plant, Water Purification Plant, Military base, and Homeland security torture bunker)
- Familiarity bias, own culture's narrow assumptions (e.g., composition of a person's name, family vs household)
- Optimism/pessimism bias, or misunderstanding subsumption ('COVID-19 drug in clinical trial' is a 'COVID-19 drug') and others

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions ●○
Outline				

Introducing models

- 2 Conceptual data models
- 3 Ontologies
- 4 Assessing models

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions ○●
Recap and f	inal remarks			

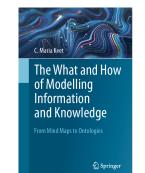
- Different types of declarative models: mind maps, diagrams, conceptual data models, ontologies
- Modelling languages' respective expressiveness strengths and weaknesses
- Which one suits best depends on the task at hand

Introducing models	Conceptual data models	Ontologies	Assessing models	Conclusions ○●
Recap and t	final remarks			

- Different types of declarative models: mind maps, diagrams, conceptual data models, ontologies
- Modelling languages' respective expressiveness strengths and weaknesses
- Which one suits best depends on the task at hand
- Professionalism: knowing which type to use when
- Resurgence in interest in modelling thanks to limitations of only data-driven AI
- Plenty of opportunities for tools, methods, methodologies, quality control, evaluation, bottom-up development from diagrams that depict models

Acknowledgments

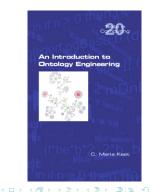
- Collaborators and students over the years (see book for the list)
- Funding sources over the years, including, mainly NRF, DST&MINCyT, UCT, HPI
- Rainfall example extended from secondment to HSM:


• Springer for the 20% discount on the What and How book

🖄 Springer

Thank you!

Questions?


- My book on modelling,
- aimed at a broader audience, and
- available in hardcopy and eBook
- https://link.springer.com/book/ 10.1007/978-3-031-39695-3

Thank you!

Questions?

- My textbook on ontology engineering (aimed at computer scientists)
- Free pdf (and slides and exercises) at https://people.cs.uct.ac.za/ ~mkeet/OEbook/
- Also available in paperback (College Publications):

References I

D. Calvanese, P. Liuzzo, A. Mosca, J. Remesal, M. Rezk, and G. Rull. Ontology-based data integration in epnet: Production and distribution of food during the roman empire. *Engineering Applications of Artificial Intelligence*, 51:212–229, 2016.

N. Chahinian et al.

Evaluation of an early flood warning system in bamako (mali): Lessons learned from the flood of may 2019. J Flood Risk Mgmt., 2023.

T.A. Halpin.

Information Modeling and Relational Databases. San Francisco: Morgan Kaufmann Publishers, 2001.

Joshua S. Madin, Shawn Bowers, Mark P. Schildhauer, and Matthew B. Jones.

Advancing ecological research with ontologies. Trends in Ecology & Evolution, 23(3):159–168, 2008.

M. Ostaszewski et al.

Covid19 disease map, a computational knowledge repository of virus-host interaction mechanisms. *Molecular Systems Biology*, 17(e1038), 2021.

Hervé Pruvost and Olaf Enge-Rosenblatt.

Using Ontologies for Knowledge-Based Monitoring of Building Energy Systems, pages 762–770. 2022.

doi: 10.1061/9780784483893.094.

References II

J. Reese et al.

Generalisable long covid subtypes: findings from the nih n3c and recover programmes. *eBioMedicine*, 87(104413), 2023.

David G. Tarboton.

Rainfall-runoff processes. 2003. URL https://hydrology.usu.edu/rrp. Utah State University, USA.

Albert Tort and Antoni Olivé.

An approach to testing conceptual schemas. Data & Knowledge Engineering, 69:598–618, 2010.

K. Wolstencroft, R. Stevens, and V. Haarslev.

Applying OWL reasoning to genomic data.

In C.J.O. Baker and H. Cheung, editors, Semantic Web: revolutionizing knowledge discovery in the life sciences, pages 225–248. Springer: New York, 2007.