
CoSMo: A multilingual modular language for Content Selection
Modelling

Kutz Arrieta
Independent scholar
Sunnyvale, USA

kutzaki@gmail.com

Pablo R. Fillottrani
Universidad Nacional del Sur
Bahía Blanca, Argentina

prf@cs.uns.edu.ar

C. Maria Keet
University of Cape Town
Cape Town, South Africa

mkeet@cs.uct.ac.za

ABSTRACT
Representing snippets of information abstractly is a task that needs
to be performed for various purposes, such as database view specifi-
cation and the first stage in the natural language generation pipeline
for generative AI from structured input, i.e., the content selection
stage to determine what needs to be verbalised. For the Abstract
Wikipedia project, requirements analysis revealed that such an
abstract representation requires multilingual modelling, content se-
lection covering declarative content and functions, and both classes
and instances. There is no modelling language that meets either of
the three features, let alone a combination. Following a rigorous lan-
guage design process inclusive of broad stakeholder consultation,
we created CoSMo, a novel Content Selection Modeling language
that meets these and other requirements so that it may be useful
both in Abstract Wikipedia as well as other contexts. We describe
the design process, rationale and choices, the specification, and
preliminary evaluation of the language.

CCS CONCEPTS
•Computingmethodologies→Natural language generation;
Semantic networks; • Information systems → Database design
and models.

KEYWORDS
Modeling Language, Query Language, Wikidata, Multilingualism
ACM Reference Format:
Kutz Arrieta, Pablo R. Fillottrani, and C. Maria Keet. 2024. CoSMo: A mul-
tilingual modular language for Content Selection Modelling. In The 39th
ACM/SIGAPP Symposium on Applied Computing (SAC ’24), April 8–12, 2024,
Avila, Spain. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
3605098.3635889

1 INTRODUCTION
Databases technologies have been evolving from RDBMS silos to
also comprise RDF triple stores that can be queried on the Web
more easily as Linked Data accessible through a SPARQL endpoint,
and knowledge graphs [14]. Such data access influenced conceptual
modelling, notably with ontology-based data access techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SAC ’24, April 8–12, 2024, Avila, Spain
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0243-3/24/04. . . $15.00
https://doi.org/10.1145/3605098.3635889

(e.g., [9, 28]), where the model serves the dual purpose of abstract
representation of the data store’s content and as starting point for
query construction. One such publicly editable RDF data store is
Wikidata, which will be used in the new Abstract Wikipedia project
[26, 27]. Abstract Wikipedia aims to be a ‘next generation’ truly
multilingual Wikipedia, where articles are generated from data
stored in Wikidata and functions from Wikifunctions in at least all
supported languages of the Wikipedia ecosystem. This requires an
open, publicly editable multilingual natural language generation
(NLG) systems for verbalising structured data, information, and
knowledge that is selected from Wikidata and Wikifunctions.

Such a system is currently under development and related re-
search is being conducted, such as verbalising all RDF statements
in a selected topic into basic English [1] and ad hoc content se-
lection that focuses on multiple languages instead [22]. What is
supposed to be positioned there, is what the community refers to
as “constructors” and the “abstract representation” [26], for which
no proposal exist yet, only an exploration of what it may, or may
not, involve1. The selection of content from Wikidata, and possible
processing with functions from Wikifunctions, is expected to be
done by end users, in snippets or small modules (the basic ‘con-
structors’) at a time, where the constructors can be put together to
automatically generate larger pieces of text to make up an article
on a topic in the desired language, and declaring such constructors
would be done in the user’s preferred natural language. This con-
tent selection step is suggestive of being alike creating a database
view, but with a few extras, notably calculating something, such
as the age based on date of birth. That is, it needs at least a ‘view
creation’ syntax for RDF, alike SQL’s CREATE VIEW, but in such
a way that it is implementation-independent, since the Wikidata
database may be converted to JSON or moved into an RDBMS for
performance at a later stage and one would not want to have to
update all user-defined constructors because of it. Alternatively,
such a prospective constructor language can be seen as one aimed
at information modelling.

There is no modelling language that meets these requirements,
nor is there, to the best of our knowledge, a standard for content se-
lection in the NLG systems processes. We propose a new modelling
language for the constructors, i.e., the content selection specifica-
tion step, which can be used with Abstract Wikipedia and other
content selection tasks in NLG to verbalise structured data, infor-
mation, and knowledge, as well as in other tasks where users need
to select a fragment of a model. The key features and novelties com-
pared to other conceptual data modelling and view specification
languages are:

1https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Wikidata_Abstract_
Representation; version of 29 Nov 2022.

https://doi.org/10.1145/3605098.3635889
https://doi.org/10.1145/3605098.3635889
https://doi.org/10.1145/3605098.3635889
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Wikidata_Abstract_Representation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Wikidata_Abstract_Representation

SAC ’24, April 8–12, 2024, Avila, Spain K. Arrieta, P.R. Fillottrani, and C.M. Keet

• Multilinguality is embedded in the modelling language;
• A fully modular approach, where modules (as so-called ‘con-
structors’) are first-class citizens in the language;

• Declarations can be made at both class and instance level in
the same language;

• Declarations can contain both static content and functions to
compute content that can be derived from the static content.

We followed a rigorous language design process that was intro-
duced by [6, 8], with this being its first industry-initiated use case.
We describe the design process, rationale and choices made, the
specification of the language—called CoSMo, Content Selection
Modeling language—and a preliminary evaluation. The evaluation
showed that it meets these and other requirements so that it may
be useful both in Abstract Wikipedia as well as other contexts.
More examples, the BNF grammar, and the shorthand notation are
available as technical report [2].

The remainder of the paper is structured as follows. Section 2
provides background onNLG, AbstractWikipedia, and the notion of
modelling language design. Section 3 describes the process followed,
design principles chosen, and the specification of CoSMo. Section 4
reports on the evaluation of CoSMo. We discuss and compare it to
related work in Section 5 and conclude in Section 6.

2 BACKGROUND
The related work consists of three converging themes: features and
limitations of current conceptual modelling languages, procedures
for the design of modelling languages, and NLG in general and for
Abstract Wikipedia in particular. We defer comparing modelling
and selection languages against the features of CoSMo, that we
will propose in the next section, to the discussion in Section 5.

There are many ways to generate natural language from struc-
tured input, which is typically either data, such as from spreadsheets
and databases, or structured information, such as verbalising con-
ceptual data models, or ontologies. What they all have in common
is a pipeline approach. The ‘reference pipeline’ [23] is illustrative
of the kinds of tasks that need to be decided upon, which may prac-
tically entail additional sub-pipelines and loops back to an earlier
stage (see [19] for an overview). The steps are: A) text planning with
(1) content determination and (2) discourse planning; B) sentence
planning with (3) aggregation, (4) lexicalisation, and (5) referring
expression generation; and C) linguistic realisation involving (6)
grammar and orthography rules to produce correct sentences.

Within the context of Abstract Wikipedia, the input is to be
extracted fromWikidata, the computations are expected to be done
on Wikifunctions, and the output is to be a Wikipedia article [27].
Wikidata is an RDF triple store with over 14 billion triples. Select-
ing content from it to create an article is, in general idea, akin to
declaring a view over a small part of the RDF triple store, but then
with the additional option to declare functions, such as computing
a person’s age from their date of birth that is stored in Wikidata.
Currently, there is no way to do so other than writing individual
SPARQL queries at its SPARQL endpoint. It lacks a way of declaring
what Abstract Wikipedia calls the ‘constructors’. The two proof-of-
concept tools, Ninai/Udiron [20] and the one with Scribunto, use a
temporary mechanism, where the former merges data structures
from across the pipeline whilst it resolves query answering through

the SPARQL endpoint for the Wikidata content and lexeme data,
and the latter has ad hoc constructors to focus on the realiser2.
Also Grammatical Framework is being explored, but it focuses on
multilingual surface realisation and also has no solution for the
content selection step (section 8 in [22]). Thus, the critical steps of
systematic, robust, multilingual, and end-user accessible content se-
lection and ordering is missing from the overall Abstract Wikipedia
pipeline to date, and thus also where something needs to be chosen
from the design options.

It is that language for the constructors in step 1 that we aim to
design, which entails a notion of language design. This requires
a design procedure, which has been proposed recently in [8] and
adapted for conceptual models in [6]. We avail of this here, adapted
to the, to the best of our knowledge, first use case of that proposal,
as shown in Fig. 1, and use it for a different type of modelling
language.

1. Clarification of Scope and Purpose

7. Evaluation and Refinement

6. Development of Modelling Tool

5. Design of Notation for Modeller

4. Language Specification

3. Analysis of Specific Requirements
and Ontological Analysis

2. Analysis of General Requirements

2a. Determine requirements (for modelling,
reasoning); 2b. Devise use case scenarios; 2c.
Assign priorities to requirements and use cases

4a. Specify syntax and semantics; 4b. Describe
glossary and start with documentation; 4c. Define
metamodel

1a. Determine scope, benefits; 1b. Long-term
perspective, economics, feasibility

5a. Create graphical notation and sample
diagrams or controlled natural language; 5b.
Evaluate notation

7a. Define test cases, validate and verify; 7b.
Check against requirements; 7c. Analyse effect
of use on current practice

3a. Assess ontological commitments and
language constructs extracted from use cases;
3b. Consider performance trade-offs

6a. Create computer processable format;
6b. Create diagrams/CNL and evaluate notation;
6c. Associate with automated reasoner

Figure 1: Development process of [6] adapted to the con-
structor language design case as follows: dark blue: wide
consultative process;mediumblue: language creation by the
authors; light blue: planned; grey text: task not used because
deemed not needed.

3 LANGUAGE DESIGN
We demarcate the prospective language to be intended only for
step 1 of the reference pipeline: content selection. It leaves open
the option whether modules in a later step of the NLG pipeline may
devise a strict extension for discourse planning and other language
information, but this is beyond the scope of this paper. We first
describe the procedure followed and then the specification.

3.1 Requirements elicitation (steps 1-3)
The methodological approach followed is overlaid over the dia-
gram in Fig. 1. For the first three steps in the development process,
several stakeholder meetings were held online on Google Meet
in September and October 2022. An initial design document was
drafted by Arrieta to which other members contributed and which
was discussed and extended in the meetings and over email. These

2Ninai/Udiron by Mahir Morshed: https://gitlab.com/mahir256/ninai/-
/tree/main/ninai/constructors; Scribunto-based one by Ariel Gutman:
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_
Wikifunctions/Scribunto-based_implementation.

https://gitlab.com/mahir256/ninai/-/tree/main/ninai/constructors
https://gitlab.com/mahir256/ninai/-/tree/main/ninai/constructors
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions/Scribunto-based_implementation

CoSMo: A multilingual modular language for Content Selection Modelling SAC ’24, April 8–12, 2024, Avila, Spain

meetings comprised both theory-based approaches and example-
based approaches. This was subsequently reworked into two docu-
ments, one for public consumption and discussion on the Abstract
Wikipedia metawiki3 and one internal document with ‘leftovers’.
Around the same time, Keet created a list of possible requirements
emanating from the examples and additional examples were de-
vised, and two ‘exploration through implementation’ approaches
were pursued, which are the aforementioned Ninai/Udiron system
and the Scribunto-based proof-of-concept. An open meeting was
held on Jitsi on 21 Feb 2023 to explain the features list to clarify
terminology across specialists from the different disciplines and
obtain more feedback on preferences. This meeting was the ‘cut-off
point’ to proceed to select the required and desired parameters,
goals, and paradigms, and proceed to step 4.

3.2 Step 4: Language Specification
Broad a priori parameters exist for the Abstract Wikipedia project,
which can be recast as goals and high-level requirements that the
‘abstract representation language’ has to meet. Notably, they in-
clude adherence to Wikimedia Foundation founding principles and
guidelines, an open source licence, availability and editability in all
languages of the Wikimedia projects, and with, ultimately, the local
Wikipedia communities being in control of the content4. These
non-language goals have a partial overlap with the original aims
for OWL [15], but the emphasis on multilinguality and commu-
nity, in the sense of anyone (not just the modeller or logician), is a
mandatory requirement rather than a goal to aspire. It has, to the
best of our knowledge, no overlap with any broad parameters for
either of the conceptual modelling or query languages either.

3.2.1 Design principles. Language feature requirements can be
separated into principles that have to be met, i.e., on the ‘what’
that has to be in the language, and the ‘how’, or requirements on
how that will be incorporated in a language. For instance, one may
require roles (argument places), but there may be different ways
to incorporate them, such as unnamed with an automatic counter
for identifier or requiring a human-readable name. A same list of
principles may thus still result in different modelling languages.
Nonetheless, they help setting tighter bounds. Based on the Abstract
Wikipedia meetings, presentations, discussions, proof-of-concept
tools, feature comparison document, and additional examples, the
principles chosen are as follows:

• Roles of relationships, not the Entity-Attribute-Value style.
This aligns well with existing information modelling lan-
guages as well as the language and linguistic view on con-
structors where roles are used heavily for predicates and
verbs, such as in VerbNet [21] and FrameNet [3].

• Separation of the content from the natural language render-
ing aspects, i.e., to aim for not having linguistic markers in
the constructors.

• For a first version of the language at least: any noise in
the data is expected to be corrected in the source rather
than building verification mechanisms into the modelling

3https://meta.wikimedia.org/wiki/Special:MyLanguage/Abstract_Wikipedia/
Wikidata_Abstract_Representation, d.d. 29 Nov 2022.
4See https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Requirements.

language. This deviates from the aim of constraints in con-
ceptual data modelling languages (CDMLs), which reflects
its position in the pipeline, it being after adding data to the
database rather than before, and that modifying Wikidata is
open to anyone.

• Vocabulary creation in constructors is prohibited; rather,
Wikidata L (lexicographic), Q (object [type]), or P (property)
items are to be used and if it is not in Wikidata yet, then the
user must add it there first. This enables its multilinguality
and prevents universe of discourse semantic mismatches and
costly mapping assertions.

• The language must permit both declarative content and func-
tions, where a constructor may have either or both sort of
content. This bears a resemblance to UML class diagram’s
attributes and methods, but then realised differently (e.g.,
function execution is assumed to happen on Wikifunctions).

• The representation should be the least perspectivist possible
(to allow representing several points of view on content, such
as class vs attribute or property), so that fewer constructors
need to be specified that are more versatile in their use in
the NLG pipeline.

• To facilitate the multilinguality of the language yet provide
stability to the language specification, there must be a 1:1
mapping on reserved strings in the language specification
to Wikidata items or lexemes. The key benefit of the 1:1
mapping is that then the language is de facto multilingual,
because it can fetch the label in one’s desired language from
Wikidata. This ensures that if an item is deleted in Wikidata,
then the language will not be broken as knock-on effect.

• Constructors can be reused and combined in other construc-
tors and they can be defined for either particular instances or
at the type-level where then all the Wikidata instances that
satisfy it are retrieved; hence, multiple articles or paragraphs
or sentences may be created at once or a value can be set for
a one rendering such that only one item will satisfy it.

• Constructors can be refined or generalised, in that one can
take an existing constructor that a contributor declared and
add or remove features.

The last one on constructor size, reuse, and instance versus type
level caused confusion in the meetings, since many wanted type
level constructors but typically started with instance-level examples
and declarations. After much deliberation as to the constructor size,
it was concluded that there is no unambiguous way to demarcate
it; size will depend on the amount of generalisation and composi-
tionality for reusability. This is related to the issue of whether to
add a reserved wrapper element like, say, ‘article’: what may end
up as an article in one language may be only a paragraph of an
article in another language. Different stances might be taken to
improve readability or tolerate NLG systems that cannot yet com-
pute sentence aggregation and referring expressions. In addition,
when it comes to realisation in a specific language, further down
in the pipeline, the same constructor might be realized in one word
(in highly agglutinative languages), a compound, a phrase, a long
sentence or a sequence of sentences. This will also depend on the
maturity of the realizer. A version 1 may see a more telegraphic
style realizer, which facilitates generation while preserving content.

https://meta.wikimedia.org/wiki/Special:MyLanguage/Abstract_Wikipedia/Wikidata_Abstract_Representation
https://meta.wikimedia.org/wiki/Special:MyLanguage/Abstract_Wikipedia/Wikidata_Abstract_Representation
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Requirements

SAC ’24, April 8–12, 2024, Avila, Spain K. Arrieta, P.R. Fillottrani, and C.M. Keet

What was not extensively discussed during the meetings, is
whether the language should be ontology-driven, in part due to
aversion to the idea by some and it seems to be a general tendency
within the Wiki projects as it being too prescriptivist. An ontology-
driven way can take several forms. For instance, it may be alike
OntoUML where each class is stereotyped with an entity from the
foundational ontology UFO [12], at the level of the language itself
by embedding ontological commitments into it [8], or an optional
alignment to a foundational ontology category. Either way, o Onto-
logical commitments cannot be avoided for the language itself. The
design principle and requirement of roles mean a so-called position-
alist stance on the nature of relations rather than “standard view”
or “anti-positionalist” [10]. The separation of the subject domain
semantics from the language features also has implications for how
one assumes the world to be.

Other features are either more contentious or less certain about
possible ramifications or level of desirability. They can be designed
as strict extensions to a base language, alike with the design of OWL
and OWL 2. Here, a lean language that is simple to use is preferred,
since community adoption is aimed for. If a more experienced
constructor author wants to add a more precise specification, they
should be able to, which may be offered in an ‘advanced’ cf. a
‘standard’ interface for the language that meets the goals listed
above; specifically:

• Mandatory participation of an element. This imposes the
requirement that both that datamust be available inWikidata
and there must be NLG algorithms in the target language to
render at least that part of the constructor.

• Union of Q or P items. It could be argued that duplication
should be removed from Wikidata and therefore this would
not be needed, or it could be achieved by merging two oth-
erwise the same constructors. The former may not be easy
to effectuate and for the latter, the union operator amounts
to a simple syntactic sugar to simplify constructor creation.

Negation did not appear in any of the examples and thus made it in
neither the principal nor the extended list. It may be an unexplored
omission, as it is certainly not a conscious ‘no’.

3.2.2 The language: specification and notation for modellers. Prac-
tically, this design process proceeded in iterations between steps 4
and 5, and then finalised with an iteration between steps 5 and 7 of
the procedure.

CoSMo syntax. The basic elements are listed in Table 1. The
graphical icons were selected as inspired by ORM2 notation when-
ever possible, except for two constructor icons, one for types and
one for instances, that are absent from ORM2. In addition to the
Wikidata and Wikifunctions items, we can observe there is only the
possibility to define new constructor types and objects. The third
column provides some details on how these elements can be used.

Table 2 shows connectors between two of the basic elements in
Table 1. Again, graphical icons from ORM2 and UML were selected
when possible. The only new icon is the trident icon linking a new
type or instance to its definition. This definition must be given in
basis a relationship participation, and is done by means of local
variables. In order to foster simplicity of the language, we define
the scope of these variables to be local to the current model. Global

Table 1: CoSMo basic elements. The longform notation dis-
plays the English labels for readability, where the respective
Wikidata items are listed in Table 5. The formal syntax is
given in additional material.

Element
Icon

Longform repre-
sentation

Usage

Object(Q) or ObjectType(Q)
Typically a Q (possibly a P) object (i.e.,
instance) or object type (i.e., class)

Function(Z(. . .))

𝑛−𝑎𝑟𝑦 function to compute something
that is not an NLG-related function (e.g.,
age), Z ‘object’. The function arguments
have the representation given in the
next row.

Z(Q1,. . .,Qn)

Notation for 𝑛-ary function arguments;
here, the𝑛−1 first elements correspond
to the arguments for the function call
while the last compartment connects
to the function icon (indicated by the
dashed connection, as usual in ORM)

Property(P(Role1, Role2))
Typically a P (possibly Q) item, i.e.,
a property that relates (at least) two
things.

TypeConstructor:T()
Constructor (at the type level); must be
used in conjunction with at least one
definition. T is a local variable

InstanceConstructor:O()
Constructor (at the instance level); must
be used in conjunction with at least one
definition. O is a local variable

variables like in RDF would increase the reusability of the models,
but this is not a current requirement for the language.

Table 3 presents the constraint representations of CoSMo: value
constraints, role names, join relationship, role mandatory partici-
pation and instantiation. Actually, role names are not constraints
but just syntactic sugar that later may be useful in further steps in
the NLG pipeline.

CoSMo semantics. We formalize the meaning of the textual rep-
resentation in first order logic. Our language is formed with one
constant 𝑞, 𝑝, 𝑧 for each P, Q, Z items referenced in Wikipedia and
Wikifunctions; one unary predicate for each Q item, and each object
variable, object type variable, and role variable; one binary predi-
cate for each P item; and one 𝑛-ary function for each 𝑛-ary Z item.
We also include the special predicates QItem(), PItem(), ZItem(),
Has(), PPartOf() and Contains(). The first three are unary predi-
cates for each type of Wiki item. Has() is a set of predicates to repre-
sent the function application to a given set of arguments. PPartOf()
is a binary predicate formalising the proper parthood relation (as-
suming ground mereology [25]), which is transitive, irreflexive, and
asymmetric. Contains() is quaternary predicate relating an object
in the domain with the predicate name and predicate instances it
reifies. Remember that the only possibility of introducing a new
element is by defining it as a particular predicate instantiation. The
semantic mapping is shown in Table 4. In a given model definition,
we can have object and type constructor, subconstructor, and in-
stance definitions. Within the type constructor we can have at least
one predicate declaration, two or more role declarations, and zero
or more function declarations. Role declaration may include object
and object type declaration, with optional role names and value
constraints. The object constructor has the same structure as the
type constructor, with the addition of at least one instantiation dec-
laration. A CoSMo interpretation is a tuple I = ⟨Δ, ·I , 𝑜𝑏, 𝑛𝑎𝑚𝑒⟩.
We assume a countable infinite domain Δ, which includes all P, Q,
Z items referred in Wikipedia and Wikifunctions, which we call 𝑃 ,
𝑄 and 𝑍 . Thus, 𝑃 ∪𝑄 ∪ 𝑍 ⊆ Δ. There is also in I a unique object
assigned to each tuple by the injective function 𝑜𝑏 : 𝑃 ×𝑄 ×𝑄 → Δ

CoSMo: A multilingual modular language for Content Selection Modelling SAC ’24, April 8–12, 2024, Avila, Spain

Table 2: Connector vocabulary of CoSMo. The longform no-
tation displays the English labels for readability; the respec-
tive Wikidata items are listed in Table 5.

Connector
Icon

Longform rep-
resentation

Usage

SubConstructorOf(T1,
T2)

Subtype constructor between local vari-
ables

InstanceOf(O, T) Instance constructor between local vari-
ables

role:Object(Q) or
role:ObjectType(Q) or
Function(Z)

Connector/link to connect a Q to a P, or
a Z to a list of arguments

PartOf(T1,T2)
Connector for a container type T1 to
a contained type T2, both as local vari-
ables.

PartOf(O1,O2)
Connectorfor a container object O1 to a
contained object O2, both as local vari-
ables.

TypeConstructor:
T(definition)

Connector to define a new type as a
participation in a relationship; definition
contains relevant predicate and role dec-
laration.

InstanceConstructor:
O(definition)

Connector to define a new object as a
participation in a relationship; definition
contains relevant predicate, role and in-
stantiation declarations.

assigning a unique domain element which objectifies each predi-
cate tuple, and the interpretation function ·I is defined as usual in
predicate logic, with the additional following axioms:

𝑄𝐼𝑡𝑒𝑚 (𝑞)I ≡ 𝑞I ∈ 𝑄I 𝑄1 (𝑞2)I ≡ 𝑞I2 ∈ 𝑄I
1

𝑃𝐼𝑡𝑒𝑚 (𝑝)I ≡ 𝑝I ∈ 𝑃I 𝑃 (𝑥, 𝑦)I ≡ (𝑥I , 𝑦I) ∈ 𝑃I

𝑍𝐼𝑡𝑒𝑚 (𝑧)I ≡ 𝑧I ∈ 𝑍I 𝑅𝑜𝑙𝑒 (𝑥)I ≡ 𝑥I ∈ 𝑅𝑜𝑙𝑒I

𝐻𝑎𝑠 (𝑓 , 𝑥, ..., 𝑥, 𝑟)I ≡ 𝑟I = 𝑓 I (𝑥I , . . . , 𝑥I)

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑠 (𝑥, 𝑝, 𝑦1, 𝑦2)I ≡ 𝑜𝑏 (𝑝I , 𝑦I1 , 𝑦
I
2) = 𝑥I

Then, all interpretations that satisfy a given CoSMo model defini-
tion are models for that definition.

4 EVALUATION
The main aim of the evaluation is to test the expressiveness of
the language: can it do what it should do? To examine this, we
check CoSMo against the requirements and design decisions and
revisit the examples that were used to devise the set of language
requirements to determine whether they can be represented in the
new modelling language. Due to space limitations, we focus on an
illustrations and revisiting the requirements; see the supplementary
material [2] for more examples.

Table 3: Constructor language adornment vocabulary of
CoSMo.

Adornment
Icon

Longform repre-
sentation

Usage

definition{ValueConstraint} Value constraint for a type, an ob-
ject or a function definition. Con-
straints are expressed as in ORM2

Role[Name]:Object(Q) or
Role[Name]:ObjectType(Q)

Defines the role as in the declara-
tion, assigning a name to the par-
ticipation. The definition of object
or object type as in the first row of
table 1.

Join(Q1, Q2) or Join(P1,
P2)

Merge/join between two objects or
two relations of the same arity,
within the definition of a type or an
object.

IsMandatory(Role) Mandatory participation of the rep-
resentation of the element for the
constructor to be allowed to be re-
alised, within the definition of a
type or an object.

ObjectType(Q1)={Q2}

Instantiation constraint for the
characterisation of an instance,
relating one object QItem to an-
other QItem representing a type,
within the definition of a type or
an object.

Table 4: Semantics of CoSMo as first order logic formulae.

Longform FOL representation
Object(Q) QItem(𝑞)

ObjectType(Q) QItem(𝑞)
ObjectType(Q1)=Q2 QItem(𝑞1) ∧ QItem(𝑞2) ∧𝑄1 (𝑞2)

Property(P(Role1,Role2)) PItem(𝑝)∧∀𝑥, 𝑦 (𝑃 (𝑥, 𝑦) → 𝑅𝑜𝑙𝑒1(𝑥)∧
𝑅𝑜𝑙𝑒2(𝑦))

Role:ObjectType(Q) ∀𝑥 (𝑅𝑜𝑙 (𝑥) → 𝑄 (𝑥))
Function(Z(Q1,. . .,Q2)) Zitem(𝑧) ∧ Has(𝑧,𝑞1, . . . , 𝑞𝑛 , 𝑍 (𝑜))
SubConstructorOf(Q1,Q2) ∀𝑥 (𝑄1 (𝑥) → 𝑄2 (𝑥))

InstanceOf(O,T) ∀𝑥 (𝑂 (𝑥) → 𝑇 (𝑥)
PartOf(T1,T2) ∀𝑥 (𝑇 1(𝑥) → ∃𝑦 (𝑇 2(𝑦) ∧

PPartOf(𝑥, 𝑦)))
TypeConstructor:T(definition on 𝑝) ∀𝑥 (𝑇 (𝑥) →

(∃𝑦1, 𝑦2Contains(𝑥, 𝑝, 𝑦1, 𝑦2) ∧
definition on tuple 𝑝 (𝑦1, 𝑦2))

InstanceConstructor:O(definition on 𝑝) ∀𝑥𝑂 (𝑥) →
(∃𝑦1, 𝑦2Contains(𝑥, 𝑝, 𝑦1, 𝑦2) ∧
definition on tuple 𝑝 (𝑦1, 𝑦2))

Join(Q1,Q2) ∀𝑥 (𝑄 (𝑥) ↔ (𝑄1(𝑥) ∨𝑄2(𝑥)))
Join(P1,P2) ∀𝑥, 𝑦 (𝑃 (𝑥, 𝑦) ↔ (𝑃1(𝑥, 𝑦) ∨𝑃2(𝑥, 𝑦)))

4.1 Example constructors
The first example from the Abstract Representation discussion
document on the metawiki, about Edith Eger, may be modelled as
follows. First, Edith Eger is a child of two parents, for which we
create a type-level constructor (C1) and instantiate it where Edith
Eger (Q62070381 inWikidata), in C2, which is shown in the top-half
of Fig. 2. Subtyping of a constructor is illustrated with C3 being a
subconstructor of C1, since it has an additional Age function. The
instantiation and subtyping may also be drawn in different figures.
The longform serialisation of the diagrams, or straight written in
text format, can be as follows, rendered in two different natural
languages in accordance with Table 5.

SAC ’24, April 8–12, 2024, Avila, Spain K. Arrieta, P.R. Fillottrani, and C.M. Keet

Parent
(Q7566)

Child
(Q29514218)

child (P40)

{Q62070381}

C1:DOf-
spring

C2:DO:
EEger

Parent
(Q7566)

Child
(Q29514218)

child (P40)

C3:DO
w.Age

Parent
(Q7566)

Child
(Q29514218)

child (P40) Age
(Z12345)

C4

C5

Figure 2: Type-level constructors C1, C3-C5 and instance-
level constructor C2. Names are placeholders (content of C4,
C5 suppressed), which are expected to be assigned an identi-
fier in its own namespace and with at least one label.

Longform in English
TypeConstructor:C1(

Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218))

InstanceOf(C2, C1)

InstanceConstructor:C2(
Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218),
ObjectType(Q29514218)={Q62070381})

SubConstructorOf(C3, C1)

TypeConstructor:C3(
Property(P40(r1,r2)),
r1:ObjectType(Q7566),
r2:ObjectType(Q29514218),
Function(Z12345(Q29514218)))

Longform in Spanish
ConstructorDeTipo:C1(

Propriedad(P40(r1,r2)),
r1:TipoDeEntidad(Q7566),
r2:TipoDeEntidad(Q29514218))

InstanciaDe(C2, C1)

ConstructorDeInstancia:C2(
Propriedad(P40(r1,r2)),
r1:TipoDeEntidad(Q7566),
r2:TipoDeEntidad(Q29514218),

TipoDeEntitdad(Q29514218)={Q62070381})

SubConstructorDe(C3, C1)

ConstructorDeTipo:C3(
Propriedad(P40(r1,r2)),
r1:TipoDeEntidad(Q7566),
r2:TipoDeEntidad(Q29514218),
Funcion(Z12345(Q29514218)))

At the back-end, a language-independent CoSMo constructor is
stored as:
CSM0007:C3(CSM003(P40(r1,r2)), CSM004:CSM002(Q7566), CSM004:CSM002(Q29514218),

CSM005(Z12345(Q29514218)))

Besides the longform notation, a shorthand notation is specified
as well and it is possible to name both roles, which, at this stage of
modelling, are ‘ontological’ (non-linguistic) roles; e.g., r2 in C1may
be named with Q239526 (offspring/descendencia/avkomma/etc.).

4.2 Meeting the requirements
We now revisit the requirements and design principles to determine
if, and if so where, they have been met, roughly in the order as
listed in Section 3.2.1.

First, roles are present and first-class citizens in CoSMo. As
is customary practice in conceptual data modelling, they may be
named with subject domain-specific names (a Q item from Wiki-
data), but need not [16]. There are no linguistic markers in the
CoSMo specification, nor content verification checking, and by
design, one cannot create new vocabulary in the constructor. The
constructor itself needs an identifier and at least one label to ensure
its multilinguality as well, which requires an adaptation of Wiki-
data, in line with the ongoing deliberations on constructors5. The
mapping of the language elements to Wiki’s Q/P items to ensure
multilinguality is listed in Table 5. At present, it is being deliberated
in the community what the best implementation strategy would be:

5https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Updates/2023-03-15

to either reuse the indicated tentative Q and P items and add the
remainder of items and their respective labels, or to add new Q and
P items specifically for CoSMo elements. For this reason, as well as
possible Wikidata-independence to increase CoSMo’s potential for
wider application use and for languages currently not yet supported
by Wikidata, CoSMo elements have their own identifiers that are
eventually mapped to Wikidata items.

Table 5: Constructor language vocabulary of CoSMo, with
identifiers and labels in three languages. The Q and P items
are assumed to become at least de facto immutable (‘locked’)
in the sameway as other key elements inWikidata andWik-
ifunctions. TBA: item to be added toWikidata; text in italics:
item label to be added to Wikidata.

CoSMo
ID

Tentative Q/P
item in Wikidata

Feature (English / Spanish
/ Basque label)

CSM001 Q35120 ?? Object / Entidad / Izaki
CSM002 (TBA) Object type / Tipo de entidad /

izaki mota
CSM003 Q18616576 Property /Propiedad / propi-

etatea
CSM004 Q117747915 ?? Role / Rol / Rol
CSM005 Q11348 Function / Función / Funtzio
CSM006 Q1049476 ?? Instance Constructor / Con-

structor de instancia / in-
stantzia eraikitzaile

CSM007 (TBA) Type constructor / Constructor
de tipo / tipo eraikitzaile

CSM008 (TBA) Subconstructor of / Subcon-
structor de / honako berreraik-
itzaile

CSM009 Property:P31 InstanceOf / Instancia de /
honako hau da

CSM010 Property:P527 Part of / Parte de / Osatuta
CSM011 Q17853087 Join / Unión / bildura
CSM012 Q29557567 IsMandatory / Es obligatorio /

nahitaezko
CSM013 Q82799 Name / Nombre / Izen
CSM014 Q42750658 Value constraint Restricción

de valor / balio murrizte

Also, CoSMo has the requisite elements for both declarative
components, being any P and Q item, and for functions, by incor-
porating the Z identifiers from Wikifunctions. It does this in such a
way that it need not be perspectivist for the declarative components:
they are all elements on par in an arbitrary, re-orderable sequence.
The functions are of something, and do need to relate to something,
which can be denoted as if on par in the long notation, and in the
shorthand notation with the dot-notation, it is tied to a Q item.
Further functionality includes the specialisation/generalisation and
instantiation of constructors, each indicated with a different type of
arrow in the diagrammatic notation and an additional shaded box.
Instead of overloading line notation, we have added an additional
line type to connect constructors to an element of its content.

https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Updates/2023-03-15

CoSMo: A multilingual modular language for Content Selection Modelling SAC ’24, April 8–12, 2024, Avila, Spain

Finally, the two ‘extras’ were added as well: mandatory partici-
pation of an element is indicated with the purple dot and a union
of items with the open circle/Join element.

5 DISCUSSION
This paper presented a novel modelling language for content selec-
tion from databases, be they relational or triple stores, and inclusive
of functions, therewith going beyond database view specifications.
Yet, while modelling information, it is also distinct from conceptual
data modelling languages for it does not strictly require data in-
tegrity constraint specification. In addition, one may argue there are
additional requirements ‘for the 21st century’, such as the expected
use in a setting where there is a stronger demand on multilingual-
ity, openness, collaboration, and sharing. There are obviously also
things it cannot do, by design. We will first compare CoSMo to re-
lated work and then elaborate on the broader setting of the content
selection language.

5.1 Comparison to related work
To the best of our knowledge, there is no standard way for content
selection in NLG, let alone it being end-user usable. There is also no
multilingual modular conceptual modelling language or graphical
query builder, as can be seen from comparison included in Table 6.
Two conceptual data modelling languages are included for illus-
trative purpose and we also include three visual SPARQL query
builders, since in a way CoSMo will be capable to function as such
as well, albeit also with functions that is not part of SPARQL query
building. The three graphical query builders included are VSB6, the
RDF explorer [24] that also has a web-based interface7, and the
early web-based Wonder system [5] whose graphical rendering
was inspired by ORM notation.

Neither is multilingual nor are they modular. The new multilin-
gual TexToData [4] is multilingual in so far as that it takes text in
any natural language, performs a machine translation to English,
creates the model, and then back-translates, but is not inherently
multilingual. Regarding modules, while the query builders are not
modular by design and it has not been pursued beyond saving
queries [5], there are extensions for modularity of conceptual data
models. Such modularity is either geared toward scalability of the
graphical notations (see [17] for a recent overview) or as conceptual
model interoperability scenario [7] where the models-to-integrate
are recast as modules. Therefore, it received a “±” in the comparison.
Further, UML class diagrams do not have instances, but the models
can link to object models, and ORM permits derivation rules as a
sort of functions and joins over fact types (but not entity types),
earning them a “±” each for those features.

It is possible to arrive at a different abstract representation lan-
guage, be it based on a different set of requirements or ways to
‘shape’ the elements. The diagrammatic notation aimed to reuse
as much as possible an existing notation with open source code
(ORM2 [13] in this case) to ease implementation. With the logic-
based reconstruction, one is free to devise different textual and
diagrammatic notations. Either way, any tooling implementation
requires rendering all the item identifiers by their respective label.

6https://leipert.github.io/vsb/
7https://www.rdfexplorer.org/

Table 6: Comparison of CoSMo to UML Class Diagrams and
ORM and representative graphical SPARQL query builders;
–: no; ±: partial or extensions have been proposed; +: yes;
R.E.: RDF Explorer; W.: WONDER system.

Feature UML ORM2 W. VSB R.E. CoSMo
Multilinguality – – – – – +
Modularity – ± – – – +
Class-based + + + + + +
Instances ± – – – + +
Role naming + + – – – +
Functions + ± – – – +
Mandatory
and optional

+ + – + – +

Value con-
straint

+ + + + + +

Join/merge – ± + + – +
Disjoint., car-
dinality, etc.

+ + – – – –

‘Perspectivist’ + – – + – –
Positionalist + + – – – +

5.2 CoSMo in the context of Abstract
Wikipedia and beyond

The CoSMo language addresses the declarative part of the content
selection specifically and in such a way that it is essentially an
enhanced, non-RDF/SQL/ JSON/XML-expert multilingual modular
view specification language that is platform-independent. While
it indeed couples the elements of CoSMo to P and Q items, their
respective labels easily can reside in a separate array for some tool
that does not reside in the Wiki ecosystem. As to the semantics
of the language, we opted for a technology-independent pivot to
prevent CoSMo possibly ‘breaking’ as soon as Wikidata would be
moved into another technology, or users elsewhere would face the
semantic specification hurdle.

Since any NLG technology requires the same sort of access to
the source content, instead of requiring each NLG pipeline devel-
oper to specify their own constructor language for content selec-
tion, this can now be done once for all such tools. For Abstract
Wikipedia specifically, it means that users can write a constructor
once, and thus regardless of which NLG technique is used to convert
it into natural language—be this GF [22], Ninai [20], SimpleNLG
[11], under-resourced Niger-Congo B languages [18], or another
technique and tool—and regardless of which data store technology
Wikidata is housed in.

Down the pipeline, verbalisation considerations come to play.
The semantics, via role assignment, needs to address both world
knowledge and linguistic knowledge. Roles should be assigned in
the early stages of the constructor creation. Semantic roles, in the
linguistic sense, are concerned with abstract roles such as agent,
patient, material, etc., usually attached to arguments and comple-
ments. Syntax comes at the language-dependent realisation stage,
along with phonological and/or orthographic adjustments and gen-
eration of referring expressions (steps 5 and 6 in Fig 5). Syntactic
roles, such as subject, are effected via language-specific rules and

https://leipert.github.io/vsb/
https://www.rdfexplorer.org/

SAC ’24, April 8–12, 2024, Avila, Spain K. Arrieta, P.R. Fillottrani, and C.M. Keet

features. Linguistic roles will be added after the content selection
phase that we are focussing on here with CoSMo. Further down
in the pipeline, one may want to add that r1 is the actor and r2
the undergoer. This can be added to the constructor or a new one
may be created. An illustration of a possible extension could be as
follows (in shorthand notation):
TC:C1:L(P40(r1,r2), r1:Q7566, r2:Q29514218; r1-Actor, r2-Undergoer)

where the constructor’s name is modified to allow for 1:n between
the content constructor and other ‘constructors’ for the linguistics-
oriented abstract representation later in the NLG pipeline.

Whether that information is padded into the content constructor
like illustrated above, or addressed differently is out of this paper’s
scope. Likewise out of scope but perhaps useful in visualising the
pipeline: after the possible linguistic additions, one can move on to
syntax trees or template specifications.

Last, one may want to automate generating draft constructors
to augment constructor authoring by community members. This
could be by, e.g., assisting graph navigation to select content from
Wikidata or to induce them from sample sentences. They are tasks
that will contribute to the success of CoSMo, as well as depend on
CoSMo for their successful algorithm design.

6 CONCLUSION
This paper presented a novel modelling language, CoSMo, with
three key novelties 1) multilingual modelling, 2) content selection
covering declarative content and functions, and 3) inclusion of
both classes and instances. It was developed following a rigorous
language design process with stakeholder consultation. The prelim-
inary evaluation showed that it met these and other requirements,
so that it may be useful both in the early stage of the NLG pipeline
of Abstract Wikipedia as well as other contexts. Constructors built
with CoSMo are expected to facilitate community contributions to
a multilingual Wikipedia and it meets the constraints provided by
the platform, also enabling people of less resourced and less docu-
mented languages to specify and generate content for Wikipedia.
Current and future work includes soliciting community feedback
and a larger evaluation of CoSMo. A tool to assist with authoring
constructors is also planned.

Acknowledgements. We are grateful for for the participants’ con-
tribution to the discussions in the various meetings; the meeting
participants were: Kutz Arrieta, Maria Keet, James Forrester, Ariel
Gutman, Cory Massaro, Arthur Lorenzi, Denny Vrandecic, Ellen
Dodge, Nick Wilson. This work was financially supported in part
by the National Research Foundation (NRF) of South Africa (Grant
Number 120852) (MK) and Google.org (KA).

REFERENCES
[1] Gabriel Amaral, Odinaldo Rodrigues, and Elena Simperl. 2022. WDV: A Broad

Data Verbalisation Dataset Built fromWikidata. In The Semantic Web – ISWC 2022,
Ulrike Sattler, Aidan Hogan, Maria Keet, et al. (Eds.). Springer, Cham, 556–574.

[2] Kutz Arrieta, Pablo Fillottrani, and C. Maria Keet. 2023. CoSMo: A constructor
specification language for Abstract Wikipedia’s content selection process. Technical
Report. arXiv:2210.12027 https://arxiv.org/abs/2308.02539

[3] Collin F. Baker, Charles J. Fillmore, and John B. Lowe. 1998. The Berkeley
FrameNet Project. In 36th Association for Computational Linguistics and 17th Intl.
Conf. on Computational Linguistics, Vol 1. ACL, 86–90.

[4] Drazen Brdjanin, Mladen Grumic, Goran Banjac, Milan Miscevic, Igor Dujlovic,
Aleksandar Kelec, Nikola Obradovic, Danijela Banjac, Dragana Volas, and Slavko
Maric. 2023. Towards an Online Multilingual Tool for Automated Conceptual

Database Design. In Intelligent Distributed Computing XV, Lars Braubach, Kai
Jander, and Costin Bădică (Eds.). Springer, Cham, 144–153.

[5] Diego Calvanese, C. Maria Keet, Werner Nutt, Mariano Rodríguez-Muro, and
Giorgio Stefanoni. 2010. Web-based Graphical Querying of Databases through an
Ontology: the WONDER System. In Proceedings of ACM Symposium on Applied
Computing (ACM SAC’10), Sung Y. Shin, Sascha Ossowski, Michael Schumacher,
et al. (Eds.). ACM, 1389–1396.

[6] Pablo Fillottrani and C. Maria Keet. 2021. Evidence-based lean conceptual data
modelling languages. Journal of Computer Science and Technology 21, 2 (Oct.
2021), e10. https://doi.org/10.24215/16666038.21.e10

[7] Pablo R. Fillottrani, Enrico Franconi, and Sergio Tessaris. 2012. The ICOM 3.0
Intelligent Conceptual Modelling tool and methodology. Semantic Web Journal 3,
3 (2012), 293–306.

[8] P. R. Fillottrani and C. M. Keet. 2020. An analysis of commitments in ontology
language design. In 11th International Conference on Formal Ontology in Informa-
tion Systems 2020 (FOIS’20) (FAIA), B. Brodaric and F. Neuhaus (Eds.), Vol. 330.
IOS Press, 46–60.

[9] P. R. Fillottrani and C. M. Keet. 2020. KnowID: An architecture for efficient
Knowledge-driven Information and Data access. Data Intelligence 2, 4 (2020),
487–512.

[10] Kit Fine. 2000. Neutral Relations. The Philosophical Review 109, 1 (2000), 1–33.
[11] A. Gatt and E. Reiter. 2009. SimpleNLG: A Realisation Engine for Practical

Applications. In Proceedings of the 12th European Workshop on Natural Language
Generation (ENLG’09), E. Krahmer and M. Theune (Eds.). ACL, 90–93.

[12] Giancarlo Guizzardi, Claudenir M. Fonseca, Alessander Botti Benevides, João
Paulo A. Almeida, Daniele Porello, and Tiago Prince Sales. 2018. Endurant Types
in Ontology-Driven Conceptual Modeling: Towards OntoUML 2.0. In Proc. of ER
2018 (LNCS), J. C. Trujillo et al. (Eds.), Vol. 11157. Springer, 136–150.

[13] Terry Halpin and Tony Morgan. 2008. Information modeling and relational
databases (2nd ed.). Morgan Kaufmann.

[14] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,
Claudio Gutierrez, José Emilio Labra Gayo, Sabrina Kirrane, Sebastian Neumaier,
Axel Polleres, Roberto Navigli, Axel-Cyrille Ngonga Ngomo, Sabbir M. Rashid,
Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine
Zimmermann. 2020. Knowledge Graphs. Technical Report. arXiv:2003.02320
https://arxiv.org/abs/2003.02320

[15] Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. 2003. From
SHIQ and RDF to OWL: The making of a web ontology language. Journal of Web
Semantics 1, 1 (2003), 7–26.

[16] C. Maria Keet. 2023. An analysis of positionalism’s roles in use. In 14th Inter-
national Conference on Formal Ontology in Information Systems 2023 (FOIS’23)
(FAIA), Vol. xx. IOS Press, in press. 18-20 July, 2023, Sherbrooke, Canada.

[17] Zubeida C. Khan and C. Maria Keet. 2021. Structuring Abstraction to Achieve
Ontology Modularisation. In Advanced Concepts, Methods, and Applications in
Semantic Computing, Olawande Daramola and Thomas Moser (Eds.). IGI Global,
72–92.

[18] Zola Mahlaza. 2022. Foundations for reusable and maintainable surface realisers for
isiXhosa and isiZulu. PhD Thesis. Department of Computer Science, University
of Cape Town, South Africa.

[19] Z. Mahlaza and C. Maria Keet. 2023. Surface realisation architecture for low-
resourced African languages. ACM Transactions on Asian and Low-Resource
Language Information Processing 22, 3 (2023), 1–26.

[20] Mahir Morshed. 2023. Using Wikidata Lexemes and Items to Generate Text from
Abstract Representations. Semantic Web Journal (2023), (submitted).

[21] Martha Palmer, Claire Bonial, and Jena D Hwang. 2017. VerbNet: Capturing
English verb behavior, meaning and usage. In The Oxford Handbook of Cognitive
Science, Susan E. F. Chipman (Ed.). Oxford University Press, 315–336.

[22] Aarne Ranta. 2023. Multilingual Text Generation for Abstract Wikipedia in Gram-
matical Framework: Prospects and Challenges. Springer, Cham, 125–149.

[23] E. Reiter and R. Dale. 1997. Building applied natural language generation systems.
Natural Language Engineering 3 (1997), 57–87.

[24] Hernán Vargas, Carlos Buil-Aranda, Aidan Hogan, and Claudia López. 2019. RDF
Explorer: A Visual SPARQL Query Builder. In The Semantic Web – ISWC 2019,
Chiara Ghidini, Olaf Hartig, Maria Maleshkova, et al. (Eds.). Springer, Cham,
647–663.

[25] A. C. Varzi. 2004. Mereology. In Stanford Encyclopedia of Philosophy (fall 2004 ed.),
E. N. Zalta (Ed.). Stanford. http://plato.stanford.edu/archives/fall2004/entries/
mereology/.

[26] Denny Vrandecic. 2020. Architecture for a multilingual Wikipedia. Technical
Report. arXiv:2004.04733 https://arxiv.org/abs/2004.04733

[27] Denny Vrandecic. 2021. Building a multilingual Wikipedia. Commun. ACM 64, 4
(2021), 38–41.

[28] Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. 2019. Virtual
Knowledge Graphs: An Overview of Systems and Use Cases. Data Intelligence 1
(2019), 201–223.

https://arxiv.org/abs/2210.12027
https://arxiv.org/abs/2308.02539
https://doi.org/10.24215/16666038.21.e10
https://arxiv.org/abs/2003.02320
http:// plato.stanford.edu/archives/fall2004/entries/mereology/
http:// plato.stanford.edu/archives/fall2004/entries/mereology/
https://arxiv.org/abs/2004.04733

	Abstract
	1 Introduction
	2 Background
	3 Language design
	3.1 Requirements elicitation (steps 1-3)
	3.2 Step 4: Language Specification

	4 Evaluation
	4.1 Example constructors
	4.2 Meeting the requirements

	5 Discussion
	5.1 Comparison to related work
	5.2 CoSMo in the context of Abstract Wikipedia and beyond

	6 Conclusion
	References

