July 2017

Appendix of the paper entitled:
“Natural language template selection for
temporal constraints”

— paper presented at the CREOL 2017 workshop, part of JOWO 2017 —

C. Maria KEET!
Department of Computer Science, University of Cape Town, South Africa

Abstract. Representing temporal knowledge and information in tempo-
ral logics for ontologies and conceptual data models has faced issues due
to inaccessibility of the underlying logic and limited intuitiveness of di-
agrammatic extensions to the modelling languages. We aim to address
this by designing controlled natural language templates for generating
sentences that verbalise in English the temporal constraints defined in
a temporal logic. 101 templates were designed and evaluated by experts
in temporal logics and by ‘novice temporal modellers’ on semantic ad-
equacy and preference. There was only 12% unanimity among the ex-
perts, and 89% by majority voting. The novice temporal modellers were
much more lenient in judgment on whether the templates captured the
semantics adequately. Instead of a direct 1:1 mapping between an ax-
iom’s components and the natural language rendering, the more natural-
sounding sentences were preferred, therewith linking an axiom type as
a whole to a template.

Keywords. Temporal logics, Temporal ontologies, Controlled Natural
Language, Temporal conceptual models

1. Final templates

Considering the usual model-theoretic semantics, we use here a temporal inter-
pretation of the signature of a conceptual data model M for this. This is a struc-
ture of the form: T = ((Z,<),A%,{Z® | t € Z}), where (Z, <) is the set of
integers denoting the intended flow of time, AT # () is the interpretation domain
divided into AZ over classes and AL over data types, and M) for t € Z, is the
interpretation function which assigns a set CZ(®) C AT to each entity type C € C,
a set RT(M of tuples over AZ x AZ to each relation R € R and a set AT(®") of
tuples over Ag X AID to each attribute A € A.

The remainder of the appendix lists the abbreviation of the constraint, de-
scription, formalisation, and ‘winning’ template. Starred constraints are updated
templates cf. those presented during the evaluation.

LCorresponding Author: C. Maria Keet, Department of Computer Science, University of Cape
Town, Cape Town, South Africa; E-mail: mkeet@cs.uct.ac.za.

July 2017

e (Sc) Snapshot class,
0e CIW v € T.oe CTM):
..Cy.. is an entity type whose objects will always be a(n) ..C;.. .
e (T¢) Temporary class,
0e CTW) 5 3¢ +£ t.0 ¢ CTH),
Each ..Cy.. is not a(n) ..Cy.. for some time.
e (SR) Snapshot relationship,
re RT® v € T.r e RZW):
Each ..Cy.. ..Ry.. ..Cs.. endures indefinitely.
e (TR) Temporal relationship,
re RT® — 3¢ # t.r ¢ RTM);
The objects participating in a fact in ..Cy.. ..Ry.. ..C5.. do not relate through
..Ry.. at some time.
e (SA) Snapshot attribute,
0e CTW A (o0,d) € AT Wt € T.{o,d) € AT();
Each object in entity type ..C;.. having attribute ..A;.. has ..A;.. at all times.
e (TA) Temporal attribute,
0e CTW A (o,d) € AT — 3t £ t.(o0,d) ¢ ATH);
Each object in entity type ..Cy.. having attribute ..A;.. does not have a(n) ..A;..
at some time.
e (DEX) Dynamic extension in the future
o€ DEXg(t)C — (0€CTW Ao ¢ CTM Ao € c T,
A(n) ..Cy.. may also become a(n) ..Cs.. .
e (DEXM) Mandatory DEX,
0 € DEXMG), = (0 € ¢ 7" = 3’ > t.o € DEXA'L,);
Each ..C;.. also has to become a(n) ..C,.. .
e (DEX™) Dynamic extension in the past

o € DEX™ gv(lt)c —>(0€Clz(t)/\0¢C2) Ao € C TN,
A(n) ..Cy.. may have been a(n) ..C,.. before.
e (DEXM™) Mandatory DEX, past

0 € DEXM ™, — (0 € C7" — 3t' < t.o € DEXA);

Each ..C;.. was already a(n) ..Cs.. .
e (DEV) Dynamic evolution, future, optional
0€ DEVA Y, — (0 € ¢ TM Ao ¢ ¢ po e T po ¢ ¢, T D),
A(n) ..Cy.. may evolve to become a(n) ..Cy.. ceasing to be a(n) ..Cy.. .
e (DEVM) Mandatory dynamic evolution, future
o€ DEVMZ’;@)C —(0€Ct I >toc DEVg(lt)gz);
Each ..C;.. must evolve to ..C,.. ceasing to be a(n) ..Cy.. .

e (DEV™) Dynamic evolution, past, optional

OEDEvfc(l)CQ—>(0€Ciz(t)/\o§éC2) Ao € C T /\oéciz(t 1)

A(n) ..Cy.. may have been a(n) ..Cy.. before, but is not a(n) ..Cy..
e (DEVM ™) Mandatory dynamic evolution7 past:
o€ DEVM ™, — (0 e ¢, — 3¢ < toe DEVA'L);
Each ..C;.. was a(n) ..C,.. before, but is not a(n) ..C,.. now.
¢ (PDEX/PDEV) Persistent extension or evolution; persistence-part of the

July 2017

constraint, for classes (similar for relations and attributes):
0eCH) vt > toe),
<selected DEX/DEV option>, and this remains so indefinitely.

e (QEX) Quantitative extension, future, optional, where here and in the fol-
lowing variants, n € Z and t +n € T, and for QEX then:
o€ QExZ) = 3(t+n) > t.(0 € CTW Ao ¢ ¢TI0 ACTIE),
A(n) ..Cy.. may also become a(n) ..C,.. after [at least/at most/exactly] ..Dy

. (QEXM) Quantitative extension, future, mandatory
0 € QEXG Yy, — (0€ CTW — H(t +n) > toe Qexp &);
Each ..Cy.. will also become a(n) ..Cy.. after [at least/at most/exactly] ..Dy

e (QEX™) Quantitative extension, past, optional
o€ QEng’)C2 —=3t—n)<t(oe Clz(t_") No € C’QI(t) Noé¢ C’Qz(t_n));
A ..C;.. may already be a(n) ..C,.. for [at least/at most/exactly] ..D;.. since
.Dy.. . KX

e (QEXM™) Quantitative extension, past, mandatory

)

0€ QEXM™ 5 ¢, = (0 € Olz(t) —3(t—n)<toc QEXé(l’iEZ));

Each ..C;.. was already a(n) ..Cy.. for [at least/at most/exactly] ..D;.. since
.Dy.. . KX

e (QEV) Quantitative evolution, future
0 € QEVEy, = 3t +n) > t.(o € T Ao ¢ CTW no € T po ¢
CII(t+n));
A ..C;.. may progress to a(n) ..C,.. after [at least/at most/exactly] ..D;
ceasing to be a(n) ..Cy.. .

e (QEVM) Quantitative evolution, future, mandatory
o€ QevMa"y, — (o€ CT" = 3(t+n) > to e Qevi'HY);
Each ..C;.. must progress to a(n) ..Cy.. after [at least/at most/exactly] ..D4
, ceasing to be a(n) ..C;.. .

e (QEV™) Quantitative evolution, past
0€ QEV o, — 3(t —n) <t(o€C’1(t)/\0§ZCI(t Noe CEI=M p o ¢

T(t—

Cl(n))Q
A(n) ..C;.. may have been a(n) ..C,.. before for a period of [at least/at
most/exactly] ..D;.. , but is not a C, now. **

e (QEVM ™) Quantitative evolution, past, mandatory
o€ QEvM*g(lty)C2 S(oeC L 3t—n)<toe QEV?;SE?));
Each ..C;.. was a(n) ..Cy.. before for a period of [at least/at most/exactly]
..D;.., but is not a Cy now. **

e (RDEX) Dynamic extension for relationships, future, optional
(0,0') € RDEXR, r,” ™ —= ((0,0') € RyTM) — 3t > t.(0,0) € RT(M));
..C1.. ..Rs.. ..Cy.. may be followed by ..C;.. ..Ry.. ..C,.. some time later. **

e (RDEXM) Dynamic extension for relationships, mandatory,
(0,0") € RDEXMEX)R2 — ({0,0") € RyT®) — ¢/ > t.{0,0) € RDEXé(f’]){Q);
Each .Ci.. .R .. will be foIIowed by ..C;.. .Ra.. ..Ca.. .
e (RDEX™) Dynamlc extenswn for relationships, past optional
(0,0") € RDEXRI’Rzz(t) — ((0,0') € BT — Tt < t.(0,0') € RZ()).
..C1.. .Ry.. ..Co.. may be preceded by ..C;.. ..Ry.. ..C,.. some time earlier. **

July 2017

e (RDEXM™) Dynamic extension for relationships, past, mandatory
(0,0) € RDEXMp, "7 = ((0,0) € RI® — I < t(o,d) €
R1,R2

RDEX}_h’RQI(t/));

Each ..Cy.. ..Ry.. ..C5.. was preceded by ..C;.. ..Ry.. ..C5.. some time earlier. **
e (RDEV) Dynamic evolution for relationships, future, optional,

(0,0'y € RDEVE = ((0,0) € BRyZD — 3t > t.(0,0) € BZE) A (0,0) ¢

R1I(t/))§

..C1.. ..Rq.. ..Co.. may be followed by ..C;.. ..Ry.. ..Cs.. , ending ..Cs.. .Rs.. ..Ca..

e (RDEVM) Dynamic evolution for relationships, future, mandatory,
(0,0'y € RDEVME), — ({0,0') € RyT® — 3¢’ > t.(0,0') € RDEVL),);
Each ..C;.. ..Ry.. ..Cy.. will be followed by ..C;.. ..Ry.. ..Cy.. , terminating the
..C1.. ..Ry.. ..Cy.. relation.

e (RDEV™) Dynamic evolution for relationships, past, optional:
(0,0') € RDEVR, o 7" = ((0,0) € RT® = 3¢ < t.(0,0) € RZW) A
(0,0') ¢ RyT1));
..C1.. ..R1.. ..C5.. may have been preceded by ..C;.. ..Ry.. ..Cy.. and they are not

in that ..C4.. ..Ry.. ..Cs.. relation now.

e (RDEVM ™) Dynamic evolution for relationships, past, mandatory
(0,0) € RDEVMp, o 7" = ((0,0) € RIW = 3 < t.0,0) €
RDEVRI’RZI({));
Each ..C;.. ..Rs.. ..C5.. must have been preceded by ..C;.. ..R,.. ..Cs.., and ter-
minating that ..Cy.. ..R,.. ..Cy.. relation. **

¢ (SRDEX/SRDev) Persistence (see PDEX/PDEV),
<selected DEX/DEV option>, and this remains so indefinitely.

e (FREEZ) “frozen” attribute
a € FREezZ® — W' > t.q € AT,
Once the value for ..A;.. is set, it cannot change anymore.

e (AQEV) Quantitative evolution, where a is a binary relation between a class
and a data type,
ae AQevy", — 3(t+n) > t(ae T Aad ATD Nae T Nag
AT where n € Z;
Each ..C;..'s ..A;.. changes after [at least/at most/every] ... to ..A,.. .

