
Functional Dependencies in OWL ABoxes
Jean-Paul Calbimonte1, Fabio Porto2, C. Maria Keet3

1École Polytechnique Fédérale de Lausanne (EPFL)
Database Laboratory - Switzerland
jean-paul.calbimonte@epfl.ch

2National Laboratory of Scientific Computation (LNCC)
Computer Science Coordination – Petropolis, Brazil

fporto@lncc.br
3Faculty of Computer Science, Free University of Bozen-Bolzano, Italy

keet@inf.unibz.it

Abstract. Functional Dependency has been extensively studied in database
theory. Most recently, there have been some works investigating the
implications of extending Description Logics with functional dependencies.
As it turns out, more complex functional dependencies at the type-level can
lead to undecidability, which thus restricts its usage in the TBox. This paper
therefore focuses on enhancing its applicability to instances in the ABox.
We specify ‘FD’ as a new constructor, realized as an OWL concept. FD
instances are mapped to Horn clauses and evaluated against the ABox
according to user’s desired behavior. The latter allows users to determine
whether FDs should be interpreted as constraints, assertions or views in the
knowledge base. Our approach thereby gives ontology users data
guarantees and features usually found only in databases.

1. Introduction
Data dependencies have been introduced as a general formalism for a large class of
database constraints that augments the expressivity of database schemas [1]. Functional
dependencies (FD) are a particularly interesting type of data dependency [2] that
elegantly capture relationships between attributes of a relation leading to the
identification of primary keys and is used for the normalization procedure of a
conceptual or logical data model in order to avoid redundancy in representation of the
data. Other important applications of FD in database include query rewriting [3] and
query evaluation [4].

The semantics expressed through functional dependencies are equally relevant when
specifying a conceptual model by means of an application ontology for ontology-driven
information systems. It has been observed [5] that in data-centric applications, users
expect ontologies to offer mechanisms similar to those found in the database area that
guarantee the correctness of entered data. In particular, FDs allow users to explicitly
state high-level constraints that, once enforced, can validate the current state of a
Description Logics ABox that contains assertions about individuals of the vocabulary in
the TBox.

Indeed, in recent years, a bulk of prior research has investigated the implications of
adding functional dependencies to ontology languages (e.g. [6,9,11,12,19,20]). These
initiatives took one of two paths: extending a DL language with a new FD concept
constructor or adding FD (and key) as number restrictions over concepts and
relationships. It turns out that extending DL with a new FD concept construct requires
re-evaluating the logical implication algorithms, which in the general case has been
shown to lead to undecidability [6]. Thus, in this scenario, adding database-like
constraints to ontologies (TBox) and remaining in the decidable fragment of first order
logic requires limiting the expressiveness of a DL language in various ways. For many
data-centric ontology-driven applications, however, correctness of entered data in the
ABox may be more relevant than the expressiveness at the type-level. This work takes
the latter assumption and proposes an extension of DL ontologies with database-like
expressive FD assertions. Indeed, FDs are specified as instances of a newly defined
TBox concept named “FD”. The here proposed solution for FD assertions in an OWL-
ontology setting—to meet user’ requirements, adhere to W3C standards, and circumvent
certain theoretical limitations—allows formulating complex FD rules, including
multiple paths in both the antecedent and consequent of the rule. Three types of FDs
will be considered: classical, keys, and explicit dependencies. The first two correspond
to typical database functional dependency whereas the last one is a particular case of
tuple generating dependency [7].

We realize ABox FDs by mapping FD instances to Horn clauses [17,18] using the
SWRL rule language [8]. The effect of running the FD rules over the ABox may
achieve different results depending on the desired behavior. Three of such behaviors
have been identified leading to the extension of traditional DL knowledge base: FDs
interpreted as constrains, as assertions and as views. Firstly, the constraint behavior
indicates instances that do not comply with the FD rules. The second approach refines
the unique name assumption in DL by identifying sameAs instances represented by
different nominals and adding the corresponding axioms to the ABox. Finally, a view
behavior returns query results matching the FD specification.

The remainder of this paper is structured as follows. Section 2 contains the
preliminaries with related works and problem motivation using examples. Section 3
presents a formal framework for the FD construct and discusses enforcement
interpretation. Section 4 introduces the FD construct in OWL and section 5 presents a
first prototype implementation. Finally, we conclude in section 6.

2. Motivating examples and related work
We first sketch FD functionality desired by modelers and discuss relevant theoretical
contributions and limitations afterwards.

2.1 Motivating examples
In database theory, FDs have been seen as one of the most important concepts of
relational modeling. It allows specifying dependencies between attributes of relations
and provides the basis for normalization theory and relational keys. A FD is denoted as
X � Y, with X and Y being sets of attributes of a relation R. Such FD states that the
values of the attributes in Y are uniquely defined by the (values of the) attributes in X.
When transposing similar rules to the ontology world we discover that FDs could
indeed be very useful to enrich the representation of subject domain information. Take,

for instance, an ontology about flights. We can partially model the Flight, Airport and
Gate concepts and their linking roles, as shown in Figure 1.

Fig. 1. The FD departsThrough for Flight and Gate, indicated with a thick arrow.

In this representation, the departsFrom and arrivesAt roles functionally determine the
departsThrough role, which leads to the gate. In this example, two flights having the same
arrival and departure airports should also agree on the departure gate.

Another interesting use of functional dependencies is related to the notion of keys.
Consider as an example a Passport concept in the Flight ontology. Let us assume that an
expert in the domain states that the Country and PassNumber compose the keys of the
Passport concept, i.e., Passport is a weak entity type. Similarly to what one would express
in a database schema we could specify that the roles issuedInCountry and PassNumber
compose the key for a Passport. In an ontology, we can think of Country, Passport and
Person as concepts with the roles displayed in Figure 2 establishing a relationship
between them. The roles represented by dotted lines are the ones marked as part of the
key. In this case the key would ensure that “two passports issued for the same country
and having the same pass number are the same”. If they are the same, it is obvious that
all the other roles must also agree on their values.

Fig. 2. The key for the weak entity type Passport in an ontology; participating roles are
drawn with dashed lines.

More complex and interesting FDs can be defined over paths of roles. Consider the
example of flight tickets where the price of the flight ticket depends on the arrival and
departure airports, depicted in Figure 3.

Fig. 3. FD with paths for a flight ticket.

In Figure 3, the FD is defined not only based on the roles having Ticket as domain, but
also on paths of roles starting from Ticket. Moreover, we can be interested in explicitly
stating how exactly the price is determined based on the airports. For instance, we could

define a function that calculates the price based on the distance between the two
airports: fprice(departureAirport,arrivalAirport) = distance(departureAirport,arrivalAirport)

In that case we explicitly specify the function and that is why we will refer to this
case as Explicit Dependency throughout this paper (Figure 4).

Fig. 4. FD for the flight ticket with explicit function

Up to now we have seen several examples of FD enforcement rules that would add
expressivity to ontologies. We can classify them as “classical” FDs like in the ticket
price example in Figure 3; key FDs like in the passport example in Figure 2; and FDs
with explicit function like in Figure 4. Therefore, we see the need of defining all these
flavours of FDs in DL. In the Web Ontology Language OWL-DL [14], as well as its
proposed successor OWL 2 DL (based on SROIQ [24]), only basic FDs over a binary
relationship are expressible using FunctionalProperty and InverseFunctionalProperty.

2.2 Related works
Functional dependencies have been extensively studied in databases as a formalism to
extend database schema semantics [1,17]. In the field of Description Logics (DL), FDs
have also been the subject of recent investigations. In [9], Borgida and Weddell
expressed the necessity of adding uniqueness constraints to semantic data models,
specifically DL. They used CLASSIC [10] as target knowledge representation system
for introducing a new FD constructor, similar in syntax to object-oriented database keys
and slightly modified to represent classic FDs. As expected, this simple FD declaration
does not affect the tractability of the sub-sumption algorithm.

A more general FD concept constructor for DL was later introduced by Khizder,
Toman and Weddell [11]. Their approach mainly focused on uniqueness constraints
with the extension of paths to express role composition in FD declaration elements. The
resulting DL is named DLFD and a translation from DL-Class to DLFD is proposed.
The authors explored the complexity of logical implication problems in DLFD, by
proving equivalence with query answering in DatalognS with some restrictions, leading
to a polynomial time query evaluation.

Calvanese, De Giacomo and Lenzerini, interested in modeling conceptual data
models such as ER and UML, as DL knowledge bases, proposed identification and FD
assertions for the DLRifd language [12] in addition to other common modeling
characteristics of conceptual data models, such as n-ary relationships. FDs and
uniqueness constraints are mapped to DLRifd number restrictions and showed that
reasoning with these (non-unary) fd assertions is EXPTIME complete. Another interesting
feature of DLRifd is its ability for representing Object-Oriented class operations
(methods) using the fd construct [15]. An operation has the form f(P1,…,Ph):R, where f is
the name of the operation, h parameters, each one belonging to classes P1,…, Ph , and the

result of f belongs to class R. Formally, such an operation corresponds to a (h+1)-ary
predicate; let R be an (h+1)-ary predicate, and i, …, h, j denote components of R, then
an interpretation I satisfies the assertion (fd R i1, …ih → j) if for all t, s ∈RI, we have that
t[i1] = s[i1], …, t[ih] = s[ih] implies t[j] = s[j]. However, DLRifd with such FDs has not
been implemented in any modeling tool or reasoner.

Lutz et al. [19] first considered the case of adding keys to more expressive DLs. The
result is the addition of a set of key definition statements in a so-called key box. Lutz et
al. proved that these key constraints have an important impact on decidability. For
instance, satisfiability of concepts becomes undecidable in the general case.
Decidability is NEXPTIME-complete if key boxes are restricted to a particular kind
called Boolean key boxes. Lutz and Milicic also explored the possibility of adding not
only keys but also FDs to DLs with concrete domains [20]. Although it would initially
seem that FDs are weaker than uniqueness keys, their work showed that the impact on
decidability and complexity of reasoning is equally problematic (from the perspective of
scalable implementations) in the language they defined, ALC(D)FD.

In [23], Toman and Weddell extend their previous efforts [6] by adding the
possibility of using the FD concept constructor not only in top level and in the right
hand side of inclusion dependencies (⊆). However, this extension in the general case is
shown to lead to undecidability. Decidability is regained by focusing on a reduced DL
where Path FDs occur only at top level or in monotone concept constructors.

Thus, one can observe a clear compromise between expressivity of FDs and the
decidability of the resulting DL language. Put differently, the ontology developer’s
desired FD behaviour as described in section 2.1, (i) is not met in present ontology
development software and (ii) might be implemented only partially at the type-level
(TBox) (iii) but, despite the theoretical and software limitations, developers still would
like to see such functionality soon. To address these problems, we necessarily depart
from the above-discussed approaches by introducing FD as an application level
construct in the ontology, i.e. without changing the ontology language, and defer part of
the processing to outside of the ontology, where the obtained derived results can be
ported back into the ontology. This solution is in part inspired by [5] that elegantly
discuss the role of constraints in ontologies as compared to those in databases and the
notion of distinguishable witness predicate for holding instances not conforming to
specified constraints [21]. We describe a formal framework that accommodates classic
FDs, keys, and explicit dependencies in the next section.

3. Formalization Framework

3.1 Abstract Syntax
A FD definition fd, used for FD reasoning at the instance level, is composed of the
following elements: the antecedent A, consequent C, a root concept R and eventually a
skolem function f (see formulae 1 and 5):

),,,(fRCAfd = (1)
which can be expressed as an implication, in the same vein as traditional FDs:

):(CARfd f
!"! (2)

As illustrated in formula 3 below, the antecedent A is a set of paths. A path ui is in
turn composed of a list of roles, each one being ri. The consequent is defined by a single
path u, which is composed of l roles ui. The root concept R is the starting point of all

paths in the antecedent and consequent, so that a FD expresses relationships among
roles of a single instance of the R concept. Notice that all paths considered are single
valued and simple concatenations of roles, such that more complex composition
constructs are not allowed.

},...,,{

}{

},...,,{

},...,,{

21

,2,1,

21

l

miiii

n

sssu

uC

rrru

uuuA

i

=

=

=

=

 (3)

In case of having the deterministic function f defined, it takes as parameters
individuals of the ranges of the last roles of the antecedent paths. And the result of f
must be an individual in the range of the last role of the path in the consequent.

3.2 FD Semantics
Concerning the semantics of the fd definition, we first define path evaluation under an
interpretation X. Given an interpretation X, we say it is composed by a domain ΔX and
an interpretation function. As we have seen the interpretation function maps a role ri,j to
a subset ri,j

X ⊆ ΔX!ΔX. For paths we apply the same principle using composition of
these interpretation functions. Given a path ui, a concept R and an individual x, with x ∈
RX, then ui

X (x) is defined as:
ri,m

X(…(ri,2
X(ri,1

X(x)))…)
Now an interpretation X satisfies a FD fd = (A, C, R, f), with A and C defined as in

(1), if for all a, b ∈RX it is verified that:
if u1

X (a)= u1
X (b) and ui

X (a)= ui
X (b) and … un

X (a)= un
X (b), then uX (a)= uX (b)

3.3 Classic FDs
In the simple example of the flight gate that depends on the arrival and departure
airports (see Figure 1), the fd definition would be composed of the following
antecedent, consequent and root concept:

!

A = {u
1
,u
2
} C = {u} R = Flight

u
1

= {departsFrom}

u
2

= {arrivesAt}

u = {departsThroughGate}

We can express FDs as Horn clause rules so that later an engine can enforce the FDs
for the instances of an ontology (i.e. its ABox). In the case of classic FD the abstract fd
definition in (1) can be translated to the following Horn rule:

),(...),(),(

),(...),(),(

),(...),(),(

...

),(...),(),(

...

),(...),(),(

...

),(...),(),(

1211

1211

1,2,1,1,

11,12,11,11,1

1,2,1,1,

11,12,11,11,1

1

1

ll

ll

nmnnnn

m

nmnnnn

m

qqqqqb

pppppa

gqqqqb

gqqqqb

gppppa

gppppa

n

n

!

!

!

!

!

!

"""

""""

""""

"

""""

"

""""

"

""""

l21

l21

mn,n,2n,1

m1,1,21,1

mn,n,2n,1

m1,1,21,1

sss

sss

rrr

rrr

rrr

rrr

n

1

n

1

),(ll qpsameAs!

where the a, b, pi,j ,qij and gi elements are free variables. The variables a and b are the
common root nodes linking all the paths in the antecedent and consequent of the FD.

The ri,j are roles of an antecedent path and the si are roles of the consequent, just as
shown in (2) (3). These mappings suffer slight variations when applied to the case of
key and explicit functions.

3.4 Keys
If the FD represents a key, FD fdk, then the consequent is the instance of the root
concept itself (Id) and there is no need to specify C. It is not necessary to specify f
either:

fdk = (A, R)
(fdk R : A � Id) (4)

Given the interpretation X, it satisfies the key fdk if for all a, b ∈RX:
if u1

X (a)= u1
X (b) and … ui

X (a) = ui
X (b) and … un

X (a)= un
X (b), then a= b

Notice that the only difference at the interpretation level is that instead of ensuring the
equality between uX (a)= uX (b), we need to ensure the equality of the instances a and b
themselves. In the simple example of the passport with a key FD, the fdk definition
would be composed of the following antecedent and root concept:

}{

}{

}{},{

2

1

21

passNumber

untryissuedInCo

Passport

=

=

===

u

u

RuCuuA

The fdk needs to ensure that the instances are themselves equal if the antecedent
holds. In the case of key FD the abstract fdk definition in (4) can be translated to the
following Horn rule:

),(...),(),(

...

),(...),(),(

...

),(...),(),(

...

),(...),(),(

1,2,1,1,

11,12,11,11,1

1,2,1,1,

11,12,11,11,1

1

1

nmnnnn

m

nmnnnn

m

gqqqqb

gqqqqb

gppppa

gppppa

n

n

!

!

!

!

"""

"

""""

"

""""

""""

n

1

n

1

mn,n,2n,1

m1,1,21,1

mn,n,2n,1

m1,1,21,1

rrr

rrr

rrr

rrr

),(basameAs!

where a, b, pi,j ,qij and gi are variables in the rule language.

3.5 Explicit Function
In defining explicit function FDs, fde, the deterministic function f is specified along
with the antecedent and consequent:

 fde = (A, R, C, f)
):(CARfde f

!"! (5)

Given the interpretation X, it satisfies the explicit FD fde if for all a ∈ RX, and t1, …, tn
∈ ΔX

if t1 = u1
X (a) and … ti = ui

X (a) and … tn=un
X (a), then uX (a)=f(t1,…,ti,…,tn)

In the more complex case of the ticket price we would have:

!

A = {u
1
,u
2
} C = {u} R = Ticket f = fticket

u
1

= {belongsToFlight,departsFrom}

u
2

= {belongstoFlight,arrivesAt}

u = {hasPrice}

Notice that in this example we have two paths u1 and u2 each one having two
components. The function fticket takes airports as parameters and returns a price instance.
The abstract fde syntax in (5) can be translated to the following Horn rule:

),(...),(),(

),(...),(),(

...

),(...),(),(

...

),(...),(),(

12211

1,2,1,1,

1,2,1,1,

11,12,11,11,1 1

!!!

!

!

!

"""

""""

"

""""

""""

ll

nmnnnn

imiiii

m

pppppa

gppppa

gppppa

gppppa

n

i

1l21

mn,n,2n,1

mi,i,2i,1

m1,1,21,1

sss

rrr

rrr

rrr

n

i

1

)),...,,...,(,(11 nil gggfp !"
l

s

where a, pi,j , and gi are free variables.
Having presented the syntax and semantics for the three FD modes discussed in this

work, we turn now to discussing enforcement policies with respect to a knowledge base,
which we name FD interpretations.

3.6 FD Interpretations
An interesting aspect about FDs in ontologies is that depending on the kind of
enforcement, they can be applied quite differently. We have identified three FD
interpretations: constraints, new assertions and views.

In the first enforcement mode (i.e., constraints) FD expresses invalid states of the
ABox. Instances conforming to an FD constraint are identified and exposed to user
analysis. The second interpretation creates new ABox assertions with instances
matching the FD definitions. Finally, view interpretation corresponds to retrieving
instances matching FD specifications.

To better understand this difference of usage of FD assertions, consider the following
example, again in the context of the Flight ontology: “The tax on a ticket price
functionally depends on the passenger age-group, the departure airport and the arrival
airport”. We identify the paths for the antecedent and consequent; and the function ftax
that computes the tax based on the departure, arrival and age group: tax =
ftax(departureAirport,arrivalAirport,ageGroup).

The FD is defined as:

!

fdtax : (A,C,Ticket, f tax)

A =

{belongsToFlight,departsFrom},

belongsToFlight,arrivesAt{ },

hasPassenger,belongsToGroup{ }

"

$

%
$

&

'
$

(
$

C = hasPrice,hasTax{ }{ }

 (6)

Consider, in addition, the following ABox:
belongsToFlight(T1,F1)
departsFrom(F1,GENEVA)
arrivesAt(F1,HEATHROW)
hasPassenger(T1,CARL)
belongsToGroup(CARL,JUNIOR)

The FD assertion interpretation would produce the following ABox statement hasTax(P1,
ftax(GENEVA,HEATHROW,JUNIOR)) for a price ‘P1’ of ticket ‘T1’. Symmetrically, in case of
adapting the FD constraint enforcement interpretation, the role hasTax would appear in
the consequent of a FD specification in its negative form to check for hurting instances,
such as: not hasTax(P1,ftax(GENEVA,HEATHROW,JUNIOR)). Finally, view interpretation is

syntactically equivalent to FD assertion but with interpretation leading to instances
being returned to the user.

3.7 Extended Knowledge Base
In order to accommodate the aforementioned interpretations we extend the conceptual
model proposed in [5] according to the following extended DL-FD knowledge base,
represented as a sextuple:

K=(T, A, FD ,C,C
A
,V)

Such that:
 T is a finite set of standard TBox axioms,
 A is a finite set of standard ABox assertions,
 FD is a finite set of functional dependency definition instances, where each FD

definition can be classified as:
 FD

a
is a finite set of assertion FDs fda

i

 FD
c
 is a finite set of constraint FDs fdc

i

 FD
v
 is a finite set of view FDs fdv

i

 C is a finite set of constraint witness classes wfdci, with fdc
i
 ∈ FD

c

 C
A

is a finite set of assertion hurting some FD
c
 constraint and expressed as witness

facts, i.e. instances of wfdci .

 V is a finite set of view definitions
 V={v

1
≡ fdv

1
, …, v

n
≡ fdv

n
}, where fdv

i
 ∈ FDv

The set C
A
 of witness classes models instances hurting FD constraints. They allow

users to analyze the hurting instances without directly affecting the ABox.
The view interpretation specifies queries whose answers are computed by the explicit

dependency function over determining property values. The view characterization
defers from simple assertions in that the FD rule definition specifies necessary and
sufficient conditions for ABox assertions to match with predicates in FD.V
comprehends view labels mapped to corresponding FD

v
 instances.

Having defined FDs formally and integrated them within an extended knowledge
base, we discuss in the next section how functional dependency is specified in OWL.

4. Specifying FD in OWL-DL
In this section, the formalism introduced in section 3 is realized into an approach for
integrating FD into OWL-DL.

4.1 OWL FD Package
In order to model the abstract FD definition presented in (1) and (2), an OWL Class
called FD has been specified. This class, its subclasses and properties, have been defined
in an OWL FD package with a separate namespace owlfd. In this way, we can reuse
these FD definitions in any owl ontology, by importing the owlfd namespace:

<owl:imports rdf:resource="http://lbd.epfl.ch/fdowl.owl"/>

4.2 OWL FD Class
The owlfd:FD class, just like in the definition introduced in (1), has the following
properties: antecedent, consequent, rootClass and hasFunction. The
antecedent property links FD instances to one or more Path instances. Similarly, the

consequent property links a FD instance to at most one Path. The rootClass property
has a rdf:Class as range associating a FD instance to a class name in the OWL
ontology. The rootClass reflects the root concept of the abstract FD. Finally, the
hasFunction property indicates the resource id of the function corresponding to f as in
the abstract definition.

FD !
owl:Thing
!antecedent only Path
!antecedent min 1
!consequent only Path
! consequent max 1
=rootClass exactly 1
! hasFunction max 1

For the case of keys, a sub-property of rootClass called keyRootClass has been
defined. Any FD definition featuring this subproperty instead of rootClass should be
interpreted as a FD key definition.

The Path class, referenced by the antecedent and consequent contains a list of
property references called owlfd:PartList. The PartList class is an extension of
the generic rdf:List, specializing the rdf:first and rdf:last properties. In order
to make the PartList an ordered list of references to properties, the “first” property of
this list can only accept rdf:Property instances. The PartList definition is
specified as:

PartList !
rdf:List
!rdf:first only rdf:Property
=rdf:first exactly 1

!rdf:rest only rdf:List
=rdf:rest exactly 1

A Path is linked to a PartList through the parts property. A path must have one
PartList. We give now the definition of a Path:

Path!
owl:Thing
 !parts some PartList
=parts exactly 1

4.3 Subclasses of FD
In addition three subclasses of FD have been defined: FDa,FDc and FDv. These
subclasses correspond to the abovementioned interpretation types: assertions,
constraints and views respectively:

FDa !FD
FDc !FD
FDv !FD

As we have seen in the previous section, these interpretation differences don’t have
much impact on the abstract definition. In fact it is sufficient to use one of the three
aforementioned subclasses (FDa, FDc or FDv) to get the expected results in terms of
interpretations.

5. Implementation
Having described our approach for adding functional dependencies to OWL, we

proceed now to describe a prototype implementation demonstrating the applicability of
our ideas.

5.1 Implementation design
The starting point for implementation of functional dependencies for ontologies is
definitely the FD constructs definition. We have described how FDs can be described in
abstract terms and how this abstraction can be expressed using our OWL FD classes and
properties (see Figure 5). It is important to notice that the FD definitions are
independent from any actual implementation of the enforcement of the dependencies.
The mechanisms to guarantee that the definitions hold could follow various different
approaches. In this work we have focused on mapping the FD definitions to Horn clause
rules. In the specific case of OWL, the SWRL language constitutes a concrete example
of an effort unifying OWL DL and Horn clauses. We have already shown how to map
the OWL FD definitions to rules. This mapping mechanism has been implemented for
the three discussed interpretations. FD definitions and derived rules are based on
predicates whose terminology is part of a known knowledge base.

Fig. 5. FD Class in the ontology development tool Protégé.

Instances of FD are functional dependency definitions for the ontology; Figure 6
illustrates a Protégé OWL FD instance specification. Then, each path, such as
FD_PilotAssigment with their PathLists in the Flight ontology, is also easily editable with
Protégé. In this example, the Path is given by the PartList composed of properties
scheduledAsFlight and managedByAirline (see Figure 7).

 Fig. 6. FD antecedent and consequent.

Fig. 7. Path with PartList.

5.2 Mapping from OWL FD to SWRL

We have developed a Java application that takes OWL FD definitions of an ontology
and generates the corresponding set of SWRL rules. This procedure follows the
mapping described in section 3. In the next subsections, we will reconsider the tax
example of section 3.6, with the three variants of interpretation. Figure 8 shows a
generated SWRL rule in the SWRL tab of Protégé [22].

Fig. 8. SWRL rule for tax FD.

For the sake of simplicity in this example, the ftax function has been replaced by a
simple multiplication function called multiply, which is available out of the box as a
SWRL Built-In function and is supported in the basic package of the SWRL rule engine
we used. Alternatively, we could have specified a more complex function and have
implemented the intended behaviour using a Java class.

In the following sections we present the variations according to the intended
interpretation.

5.2.1 Assertion SWRL rules
To differentiate this kind of FD definitions, we use the FDa subclass of our FD class. In
this first case the head of the rule, or the deduction of the rule evaluation, is a predicate
that is added to the ABox of the knowledge base. This predicate is a property assertion
of the kind propertyName(?variable1,?variable2). In the example, the propertyName is
hasTax, the variable ?ticket represents a ticket individual matching the conditions in the
rule’s body, and the ?i variable holds the result of the evaluation of the swrlb:multiply
function over the variables ?age and ?depTax. These last two are the age of the passenger
of the ticket and the tax of the departure airport. To add the results of the rule evaluation

to the ABox, the user has to export the resulting predicate back to OWL through the
Protégé interface.

5.2.2 Constraint SWRL Rules
These FDs are individuals of the subclass FDc. Contrary to FDa rules, these do not add
any new assertions to the ABox as a result of FD evaluation. Instead, their enforcement
checks whether existing ABox assertions are consistent with the FDc definitions. In case
of hurting instances are detected, they are classified to the corresponding witness class,
which holds the information about the individual who is violating the FDc constraint.

A witness property in its most basic form indicates which individual violates the
constraint and the expected instance value. In the tax example, if for some reason
someone has asserted that hasTax(TICKET1,300), this contradicts the expected predicate
hasTax(TICKET1,200). The following witness is produced: witnesstax(TICKET1,200). We can
see the complete SWRL rule in the Protégé interface in Figure 9.

Notice that the witness can grow in complexity, and the information it could
eventually hold depends on how the witness property is modeled. This is similar to
custom exceptions in a programming language. The witness properties are defined in
their own constraint terminology set C, as described in section 3.7. The witness
assertions are in turn stored in the C

A
 set.

Fig. 9. Constraint SWRL rule.

5.2.3 Views with SWRL Rules
As we have already mentioned, the case of views is quite similar to that of new-
assertions. The chief difference is that the predicates of the head of the rules, the results
of the rule evaluation, are not added to the ABox. They are computed at run-time during
query processing. For example in the model of tax, equation (6), the ticket tax is
computed and retrieved in a query, but never stored anywhere. For views the results are
displayed in the context of query execution.

6. Conclusions
The extension of DL knowledge base with functional dependencies has been
acknowledged as relevant in producing more expressive ontologies. In this work we
investigate the extension of knowledge bases with three kinds of functional
dependencies: classic, keys and featuring explicit functions. In fact, to the best of our
knowledge, this is the first work in ontologies that explores functional dependencies
with an explicit function relating dependent to determining properties. We propose a

formal framework to extend ontologies with these three functional dependencies and
study the different behaviors that can be considered when running FD as Horn clause
rules. We identified three main types of interpretations for FDs: constraints, new-
assertions and views; and show how to integrate them within a common structure. The
conceptual representation is implemented in OWL by a new OWL FD concept that can
be added to any OWL ontology. This concept holds all the attributes of an FD as
properties and its instances are called functional dependency definitions. Moreover, a
mapping function translates FD assertions into SWRL rules, allowing inferences to
produce the desired FD behavior. The framework has been implemented in an initial
prototype under Protégé and using Jess as the rule execution engine.

Our approach to extend the knowledge base with a new FD class has both advantages
and disadvantages. An advantage is that it can be easily adopted without requiring any
extension to the ontology language. Furthermore, as the FD evaluation is done through
SWRL on instances in the ABox, it does not affect subsumption reasoning in the
TBOX. It turns out that this same aspect can be seen as a disadvantage as subsumption
cannot be expressed over constrained concepts with FD.

One of the main problems with functional dependencies and especially keys, is to
evaluate equality. A pragmatic option is to define equality based on datatype properties
of individuals, but this is a whole subject on its own and may deserve a deeper analysis.

Another interesting issue that we leave for future investigation is the case of key FD
with multi-valued non-key attributes, in addition to the paths and FDs that we have
modeled over single valued properties in this paper. In this scenario, deciding on
equality of sets seems not evident. Similarly, if properties in the head of a FD are
allowed to be multi-valued, then existential quantification over the set is required.

7. References
[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases, Addison Wesley,

1995.
[2] R. Fagin. Functional dependencies in a relational data base and propositional logic.

IBM Journal of Research and Development 21(6), pages 543-544. 1977.
[3] J. Hong, W. Liu, D.A. Bell, Q. Bai. Answering Queries Using Views in the Presence

of Functional Dependencies. In: Proceeding of BNCOD 2005, pages 70-81. 2005.
[4] S. Abiteboul and O. Duschka, Complexity of answering queries using materialized

views. In Proc. Of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems (PODS), Seattle, WA, 1998

[5] B. Motik, I. Horrocks, U. Sattler. Bridging the Gap Between OWL and Relational
Databases. In Proceedings of the 16th international conference on World Wide Web,
pages 807-816, 2007.

[6] D. Toman, G. E. Weddell, On Keys and Functional Dependencies as First-Class
Citizens in Description Logics. In: Proceedings of IJCAR 2006: 647-661, 2006

[7] C.Beeri, and M. Y.Vardi. Formal system for tuple and equality generating
dependencies. SIAM J Comput 13 (1984), 76--98.

[8] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, M. Dean. SWRL:
A Semantic Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/ W3C Member Submission 21 May 2004.

[9] A. Borgida and G. E. Weddell. Adding uniqueness constraints to description logics
(preliminary report). In Proceedings of the Fifth International Conference on
Deductive and Object Oriented Databases, pages 85--102, 1997.

[10] A. Borgida, R. Brachman, D. McGuinness, L. Alperin Resnick. CLASSIC: A
Structural Data Model for Objects. In Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data, pages 59-67. June 1989.

[11] V. L. Khizder, D. Toman, and Grant E. Weddell. On Decidability and Complexity
of Description Logics with Uniqueness Constraints. In International Conference on
Database Theory ICDT'01, pages 54-67, 2001.

[12] D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification constraints and
functional dependencies in Description Logics. In Proc. of IJCAI 2001, 155-160.

[13] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel-Schneider, Eds.
The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

[14] S. Bechhofer, F. van Harmelen, J. Hendler, I. Horrocks, D. L. McGuinness, P. F.
Patel-Schneider, L. A. Stein. OWL Web Ontology Language Reference,
http://www.w3.org/TR/owl-ref/, W3C Recommendation 10-02-2004.

[15] D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
In Artificial Intelligence Volume 168, Issues 1-2. October 2005, pages 70-118.

[16] H. Boley, S. Tabet, and G. Wagner. Design Rationale of RuleML: A Markup
Language for Semantic Web Rules. In Proceedings of SWWS’01, Stanford. 2001.

[17] R. Fagin. Horn Clauses and Database Dependencies. In Journal of the Association
for Computing Machinery, Vol 29, no 4, pages 952-985, 1982.

[18] R. Fagin. Normal Forms and Relational Database Operators. ACM SIGMOD
International Conference on Management of Data, May 31-June 1, 1979, Boston,
Mass. Also IBM Research Report RJ2471, Feb. 1979.

[19] C. Lutz, C. Areces, I. Horrocks, and U. Sattler. Keys, Nominals and Concrete
Domains. In Proceedings of the Eighteenth International Joint Conference on
Artificial Intelligence (IJCAI’03), pages 349-354. Morgan Kaufmann. 2003.

[20] C. Lutz and M. Milicic, Description Logics with Concrete Domains and Functional
Dependencies. In Proceedings of the 16th European Conference on Artificial
Intelligence (ECAI-2004), 2004.

[21] B. Ludäscher, A. Gupta, and M.E. Martone, Model-Based Mediation with Domain
Maps, 17th Int’l Conference on Data Engineering, Heidelberg, Germany, 2001.

[22] Protégé Community, SWRLQueryBuiltIns. Protégé Wiki
http://protege.cim3.net/cgi-bin/wiki.pl?SWRLQueryBuiltIns, July 2007.

[23] D. Toman and G. E. Weddell. On Path-functional Dependencies as First-Class
citizens. In the 2005 International Workshop on Description Logics (DL2005),
Edinburgh, Scotland, UK, July 26-28, 2005.

[24] I. Horrocks, O. Kutz, and U. Sattler. The Even More Irresistible SROIQ. In:
Proceedings of KR-2006, Lake District, UK, 2006.

