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Abstract. Functional Dependency has been extensively studied in database 
theory. Most recently, there have been some works investigating the 
implications of extending Description Logics with functional dependencies. 
As it turns out, more complex functional dependencies at the type-level can 
lead to undecidability, which thus restricts its usage in the TBox. This paper 
therefore focuses on enhancing its applicability to instances in the ABox. 
We specify ‘FD’ as a new constructor, realized as an OWL concept. FD 
instances are mapped to Horn clauses and evaluated against the ABox 
according to user’s desired behavior.  The latter allows users to determine 
whether FDs should be interpreted as constraints, assertions or views in the 
knowledge base. Our approach thereby gives ontology users data 
guarantees and features usually found only in databases.  

1. Introduction 
Data dependencies have been introduced as a general formalism for a large class of 
database constraints that augments the expressivity of database schemas [1]. Functional 
dependencies (FD) are a particularly interesting type of data dependency [2] that 
elegantly capture relationships between attributes of a relation leading to the 
identification of primary keys and is used for the normalization procedure of a 
conceptual or logical data model in order to avoid redundancy in representation of the 
data. Other important applications of FD in database include query rewriting [3] and 
query evaluation [4]. 

The semantics expressed through functional dependencies are equally relevant when 
specifying a conceptual model by means of an application ontology for ontology-driven 
information systems. It has been observed [5] that in data-centric applications, users 
expect ontologies to offer mechanisms similar to those found in the database area that 
guarantee the correctness of entered data. In particular, FDs allow users to explicitly 
state high-level constraints that, once enforced, can validate the current state of a 
Description Logics ABox that contains assertions about individuals of the vocabulary in 
the TBox. 



Indeed, in recent years, a bulk of prior research has investigated the implications of 
adding functional dependencies to ontology languages (e.g. [6,9,11,12,19,20]). These 
initiatives took one of two paths: extending a DL language with a new FD concept 
constructor or adding FD (and key) as number restrictions over concepts and 
relationships. It turns out that extending DL with a new FD concept construct requires 
re-evaluating the logical implication algorithms, which in the general case has been 
shown to lead to undecidability [6]. Thus, in this scenario, adding database-like 
constraints to ontologies (TBox) and remaining in the decidable fragment of first order 
logic requires limiting the expressiveness of a DL language in various ways. For many 
data-centric ontology-driven applications, however, correctness of entered data in the 
ABox may be more relevant than the expressiveness at the type-level. This work takes 
the latter assumption and proposes an extension of DL ontologies with database-like 
expressive FD assertions. Indeed, FDs are specified as instances of a newly defined 
TBox concept named “FD”. The here proposed solution for FD assertions in an OWL-
ontology setting—to meet user’ requirements, adhere to W3C standards, and circumvent 
certain theoretical limitations—allows formulating complex FD rules, including 
multiple paths in both the antecedent and consequent of the rule. Three types of FDs 
will be considered: classical, keys, and explicit dependencies. The first two correspond 
to typical database functional dependency whereas the last one is a particular case of 
tuple generating dependency [7].  

We realize ABox FDs by mapping FD instances to Horn clauses [17,18] using the 
SWRL rule language [8]. The effect of running the FD rules over the ABox may 
achieve different results depending on the desired behavior. Three of such behaviors 
have been identified leading to the extension of traditional DL knowledge base: FDs 
interpreted as constrains, as assertions and as views. Firstly, the constraint behavior 
indicates instances that do not comply with the FD rules. The second approach refines 
the unique name assumption in DL by identifying sameAs instances represented by 
different nominals and adding the corresponding axioms to the ABox. Finally, a view 
behavior returns query results matching the FD specification. 

The remainder of this paper is structured as follows. Section 2 contains the 
preliminaries with related works and problem motivation using examples. Section 3 
presents a formal framework for the FD construct and discusses enforcement 
interpretation. Section 4 introduces the FD construct in OWL and section 5 presents a 
first prototype implementation. Finally, we conclude in section 6.  

2. Motivating examples and related work 
We first sketch FD functionality desired by modelers and discuss relevant theoretical 
contributions and limitations afterwards. 

2.1 Motivating examples 
In database theory, FDs have been seen as one of the most important concepts of 
relational modeling. It allows specifying dependencies between attributes of relations 
and provides the basis for normalization theory and relational keys. A FD is denoted as 
X � Y, with X and Y being sets of attributes of a relation R. Such FD states that the 
values of the attributes in Y are uniquely defined by the (values of the) attributes in X. 
When transposing similar rules to the ontology world we discover that FDs could 
indeed be very useful to enrich the representation of subject domain information. Take, 



for instance, an ontology about flights. We can partially model the Flight, Airport and 
Gate concepts and their linking roles, as shown in Figure 1.  

Fig. 1. The FD departsThrough for Flight and Gate, indicated with a thick arrow. 

In this representation, the departsFrom and arrivesAt roles functionally determine the 
departsThrough role, which leads to the gate. In this example, two flights having the same 
arrival and departure airports should also agree on the departure gate.  

Another interesting use of functional dependencies is related to the notion of keys. 
Consider as an example a Passport concept in the Flight ontology. Let us assume that an 
expert in the domain states that the Country and PassNumber compose the keys of the 
Passport concept, i.e., Passport is a weak entity type. Similarly to what one would express 
in a database schema we could specify that the roles issuedInCountry and PassNumber 
compose the key for a Passport. In an ontology, we can think of Country, Passport and 
Person as concepts with the roles displayed in Figure 2 establishing a relationship 
between them. The roles represented by dotted lines are the ones marked as part of the 
key. In this case the key would ensure that “two passports issued for the same country 
and having the same pass number are the same”. If they are the same, it is obvious that 
all the other roles must also agree on their values. 

Fig. 2.  The key for the weak entity type Passport in an ontology; participating roles are 
drawn with dashed lines. 

More complex and interesting FDs can be defined over paths of roles. Consider the 
example of flight tickets where the price of the flight ticket depends on the arrival and 
departure airports, depicted in Figure 3. 

 
Fig. 3. FD with paths for a flight ticket. 

In Figure 3, the FD is defined not only based on the roles having Ticket as domain, but 
also on paths of roles starting from Ticket. Moreover, we can be interested in explicitly 
stating how exactly the price is determined based on the airports. For instance, we could 



define a function that calculates the price based on the distance between the two 
airports: fprice(departureAirport,arrivalAirport) = distance(departureAirport,arrivalAirport) 

In that case we explicitly specify the function and that is why we will refer to this 
case as Explicit Dependency throughout this paper (Figure 4).  

  
Fig. 4. FD for the flight ticket with explicit function 

Up to now we have seen several examples of FD enforcement rules that would add 
expressivity to ontologies. We can classify them as “classical” FDs like in the ticket 
price example in Figure 3; key FDs like in the passport example in Figure 2; and FDs 
with explicit function like in Figure 4. Therefore, we see the need of defining all these 
flavours of FDs in DL. In the Web Ontology Language OWL-DL [14], as well as its 
proposed successor OWL 2 DL (based on SROIQ [24]), only basic FDs over a binary 
relationship are expressible using FunctionalProperty and InverseFunctionalProperty.  

2.2 Related works 
Functional dependencies have been extensively studied in databases as a formalism to 
extend database schema semantics [1,17]. In the field of Description Logics (DL), FDs 
have also been the subject of recent investigations. In [9], Borgida and Weddell 
expressed the necessity of adding uniqueness constraints to semantic data models, 
specifically DL. They used CLASSIC [10] as target knowledge representation system 
for introducing a new FD constructor, similar in syntax to object-oriented database keys 
and slightly modified to represent classic FDs. As expected, this simple FD declaration 
does not affect the tractability of the sub-sumption algorithm.  

A more general FD concept constructor for DL was later introduced by Khizder, 
Toman and Weddell [11]. Their approach mainly focused on uniqueness constraints 
with the extension of paths to express role composition in FD declaration elements. The 
resulting DL is named DLFD and a translation from DL-Class to DLFD is proposed. 
The authors explored the complexity of logical implication problems in DLFD, by 
proving equivalence with query answering in DatalognS with some restrictions, leading 
to a polynomial time query evaluation. 

Calvanese, De Giacomo and Lenzerini, interested in modeling conceptual data 
models such as ER and UML, as DL knowledge bases, proposed identification and FD 
assertions for the DLRifd language [12] in addition to other common modeling 
characteristics of conceptual data models, such as n-ary relationships. FDs and 
uniqueness constraints are mapped to DLRifd number restrictions and showed that 
reasoning with these (non-unary) fd assertions is EXPTIME complete. Another interesting 
feature of DLRifd is its ability for representing Object-Oriented class operations 
(methods) using the fd construct [15]. An operation has the form f(P1,…,Ph):R, where f is 
the name of the operation, h parameters, each one belonging to classes P1,…, Ph , and the 



result of f belongs to class R. Formally, such an operation corresponds to a (h+1)-ary 
predicate; let R be an (h+1)-ary predicate, and i, …, h, j denote components of R, then 
an interpretation I satisfies the assertion (fd R i1, …ih → j) if for all t, s ∈RI, we have that 
t[i1] = s[i1], …, t[ih] = s[ih] implies t[j] = s[j]. However, DLRifd with such FDs has not 
been implemented in any modeling tool or reasoner. 

Lutz et al. [19] first considered the case of adding keys to more expressive DLs. The 
result is the addition of a set of key definition statements in a so-called key box. Lutz et 
al. proved that these key constraints have an important impact on decidability. For 
instance, satisfiability of concepts becomes undecidable in the general case. 
Decidability is NEXPTIME-complete if key boxes are restricted to a particular kind 
called Boolean key boxes. Lutz and Milicic also explored the possibility of adding not 
only keys but also FDs to DLs with concrete domains [20].  Although it would initially 
seem that FDs are weaker than uniqueness keys, their work showed that the impact on 
decidability and complexity of reasoning is equally problematic (from the perspective of 
scalable implementations) in the language they defined, ALC(D)FD. 

In [23], Toman and Weddell extend their previous efforts [6] by adding the 
possibility of using the FD concept constructor not only in top level and in the right 
hand side of inclusion dependencies (⊆). However, this extension in the general case is 
shown to lead to undecidability. Decidability is regained by focusing on a reduced DL 
where Path FDs occur only at top level or in monotone concept constructors.  

Thus, one can observe a clear compromise between expressivity of FDs and the 
decidability of the resulting DL language. Put differently, the ontology developer’s 
desired FD behaviour as described in section 2.1, (i) is not met in present ontology 
development software and (ii) might be implemented only partially at the type-level 
(TBox) (iii) but, despite the theoretical and software limitations, developers still would 
like to see such functionality soon. To address these problems, we necessarily depart 
from the above-discussed approaches by introducing FD as an application level 
construct in the ontology, i.e. without changing the ontology language, and defer part of 
the processing to outside of the ontology, where the obtained derived results can be 
ported back into the ontology. This solution is in part inspired by [5] that elegantly 
discuss the role of constraints in ontologies as compared to those in databases and the 
notion of distinguishable witness predicate for holding instances not conforming to 
specified constraints [21].  We describe a formal framework that accommodates classic 
FDs, keys, and explicit dependencies in the next section. 

  

3. Formalization Framework 

3.1 Abstract Syntax 
A FD definition fd, used for FD reasoning at the instance level, is composed of the 
following elements: the antecedent A, consequent C, a root concept R and eventually a 
skolem function f (see formulae 1 and 5): 

),,,( fRCAfd =                (1) 
which can be expressed as an implication, in the same vein as traditional FDs: 

):( CARfd f
!"!                (2) 

As illustrated in formula 3 below, the antecedent A is a set of paths. A path ui is in 
turn composed of a list of roles, each one being ri. The consequent is defined by a single 
path u, which is composed of l roles ui. The root concept R is the starting point of all 



paths in the antecedent and consequent, so that a FD expresses relationships among 
roles of a single instance of the R concept. Notice that all paths considered are single 
valued and simple concatenations of roles, such that more complex composition 
constructs are not allowed. 
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In case of having the deterministic function f defined, it takes as parameters 
individuals of the ranges of the last roles of the antecedent paths. And the result of f 
must be an individual in the range of the last role of the path in the consequent.  

3.2 FD Semantics 
Concerning the semantics of the fd definition, we first define path evaluation under an 
interpretation X. Given an interpretation X, we say it is composed by a domain ΔX and 
an interpretation function. As we have seen the interpretation function maps a role ri,j to 
a subset  ri,j

X ⊆ ΔX!ΔX. For paths we apply the same principle using composition of 
these interpretation functions. Given a path ui, a concept R and an individual x, with x ∈ 
RX, then ui

X (x) is defined as:  
ri,m

X(…(ri,2
X(ri,1

X(x)))…) 
Now an interpretation X satisfies a FD fd = (A, C, R, f), with A and C defined as in 

(1), if for all a, b ∈RX it is verified that: 
if   u1

X (a)= u1
X (b) and  ui

X (a)= ui
X (b) and … un

X (a)= un
X (b), then uX (a)= uX (b) 

3.3 Classic FDs 
In the simple example of the flight gate that depends on the arrival and departure 
airports (see Figure 1), the fd definition would be composed of the following 
antecedent, consequent and root concept: 

  

! 

A = {u
1
,u
2
} C = {u} R = Flight

u
1

= {departsFrom}

u
2

= {arrivesAt}

u = {departsThroughGate}

 

We can express FDs as Horn clause rules so that later an engine can enforce the FDs 
for the instances of an ontology (i.e. its ABox). In the case of classic FD the abstract fd 
definition in (1) can be translated to the following Horn rule: 
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where the a, b, pi,j ,qij and gi elements are free variables. The variables a and b are the 
common root nodes linking all the paths in the antecedent and consequent of the FD. 



The ri,j are roles of an antecedent path and the si are roles of the consequent, just as 
shown in (2) (3). These mappings suffer slight variations when applied to the case of 
key and explicit functions.  

3.4 Keys 
If the FD represents a key, FD fdk, then the consequent is the instance of the root 
concept itself (Id) and there is no need to specify C. It is not necessary to specify f 
either: 

fdk = (A, R)  
(fdk R : A �  Id)               (4) 

Given the interpretation X, it satisfies the key fdk if for all a, b ∈RX: 
if   u1

X (a)= u1
X (b) and … ui

X (a ) = ui
X (b) and … un

X (a)= un
X (b), then a= b 

Notice that the only difference at the interpretation level is that instead of ensuring the 
equality between uX (a)= uX (b), we need to ensure the equality of the instances a and b 
themselves. In the simple example of the passport with a key FD, the fdk definition 
would be composed of the following antecedent and root concept: 
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The fdk needs to ensure that the instances are themselves equal if the antecedent 
holds. In the case of key FD the abstract fdk definition in (4) can be translated to the 
following Horn rule: 
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where  a, b, pi,j ,qij and gi are variables in the rule language.  

3.5 Explicit Function 
In defining explicit function FDs, fde, the deterministic function f is specified along 
with the antecedent and consequent: 

 fde = (A, R, C, f)  
):( CARfde f

!"!                          (5) 

Given the interpretation X, it satisfies the explicit FD fde if for all a ∈ RX, and t1, …, tn 
∈ ΔX 

if  t1 = u1
X (a) and … ti = ui

X (a) and … tn=un
X (a), then  uX (a)=f(t1,…,ti,…,tn) 

In the more complex case of the ticket price we would have: 

  

! 

A = {u
1
,u
2
} C = {u} R = Ticket f = fticket

u
1

= {belongsToFlight,departsFrom}

u
2

= {belongstoFlight,arrivesAt}

u = {hasPrice}

 



Notice that in this example we have two paths u1 and u2 each one having two 
components. The function fticket takes airports as parameters and returns a price instance. 
The abstract fde syntax in (5) can be translated to the following Horn rule: 
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where  a, pi,j , and gi are free variables. 
Having presented the syntax and semantics for the three FD modes discussed in this 

work, we turn now to discussing enforcement policies with respect to a knowledge base, 
which we name FD interpretations. 

3.6 FD Interpretations 
An interesting aspect about FDs in ontologies is that depending on the kind of 
enforcement, they can be applied quite differently. We have identified three FD 
interpretations: constraints, new assertions and views. 

In the first enforcement mode (i.e., constraints) FD expresses invalid states of the 
ABox. Instances conforming to an FD constraint are identified and exposed to user 
analysis. The second interpretation creates new ABox assertions with instances 
matching the FD definitions. Finally, view interpretation corresponds to retrieving 
instances matching FD specifications. 

To better understand this difference of usage of FD assertions, consider the following 
example, again in the context of the Flight ontology: “The tax on a ticket price 
functionally depends on the passenger age-group, the departure airport and the arrival 
airport”. We identify the paths for the antecedent and consequent; and the function ftax 
that computes the tax based on the departure, arrival and age group: tax = 
ftax(departureAirport,arrivalAirport,ageGroup). 

The FD is defined as: 

  

! 

fdtax : (A,C,Ticket, f tax )

A =

{belongsToFlight,departsFrom},

belongsToFlight,arrivesAt{ },

hasPassenger,belongsToGroup{ }
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C = hasPrice,hasTax{ }{ }

             (6) 

Consider, in addition, the following ABox: 
belongsToFlight(T1,F1) 
departsFrom(F1,GENEVA) 
arrivesAt(F1,HEATHROW) 
hasPassenger(T1,CARL) 
belongsToGroup(CARL,JUNIOR) 

The FD assertion interpretation would produce the following ABox statement hasTax(P1, 
ftax(GENEVA,HEATHROW,JUNIOR)) for a price ‘P1’ of  ticket ‘T1’. Symmetrically, in case of 
adapting the FD constraint enforcement interpretation, the role hasTax would appear in 
the consequent of a FD specification in its negative form to check for hurting instances, 
such as: not hasTax(P1,ftax(GENEVA,HEATHROW,JUNIOR)). Finally, view interpretation is 



syntactically equivalent to FD assertion but with interpretation leading to instances 
being returned to the user. 

3.7 Extended Knowledge Base 
In order to accommodate the aforementioned interpretations we extend the conceptual 
model proposed in [5] according to the following extended DL-FD knowledge base, 
represented as a sextuple: 

K=(T, A, FD ,C,C
A
,V) 

Such that: 
 T is a finite set of standard TBox axioms, 
 A is a finite set of standard ABox assertions, 
 FD is a finite set of functional dependency definition instances, where each FD 

definition can be classified as: 
  FD

a 
is a finite set of assertion FDs fda

i
 

  FD
c
 is a finite set of constraint FDs fdc

i
 

  FD
v
 is a finite set of view FDs fdv

i
 

 C is a finite set of constraint witness classes wfdci, with fdc
i
 ∈ FD

c 

 C
A 

is a finite set of assertion hurting some FD
c
 constraint and expressed as witness 

facts, i.e. instances of wfdci . 

 V  is a finite set of view definitions  
  V={v

1
≡ fdv

1
, …, v

n
≡ fdv

n
},  where fdv

i
 ∈ FDv  

The set C
A
 of witness classes models instances hurting FD constraints. They allow 

users to analyze the hurting instances without directly affecting the ABox.  
The view interpretation specifies queries whose answers are computed by the explicit 

dependency function over determining property values.  The view characterization 
defers from simple assertions in that the FD rule definition specifies necessary and 
sufficient conditions for ABox assertions to match with predicates in FD.V 
comprehends view labels mapped to corresponding FD

v
 instances.  

Having defined FDs formally and integrated them within an extended knowledge 
base, we discuss in the next section how functional dependency is specified in OWL. 

4. Specifying FD in OWL-DL 
In this section, the formalism introduced in section 3 is realized into an approach for 
integrating FD into OWL-DL.  

4.1 OWL FD Package 
In order to model the abstract FD definition presented in (1) and (2), an OWL Class 
called FD has been specified. This class, its subclasses and properties, have been defined 
in an OWL FD package with a separate namespace owlfd. In this way, we can reuse 
these FD definitions in any owl ontology, by importing the owlfd namespace: 

<owl:imports rdf:resource="http://lbd.epfl.ch/fdowl.owl"/> 

4.2 OWL FD Class  
The owlfd:FD class, just like in the definition introduced in (1), has the following 
properties: antecedent, consequent, rootClass and hasFunction. The 
antecedent property links FD instances to one or more Path instances. Similarly, the 



consequent property links a FD instance to at most one Path. The rootClass property 
has a rdf:Class as range associating a FD instance to a class name in the OWL 
ontology. The rootClass reflects the root concept of the abstract FD. Finally, the 
hasFunction property indicates the resource id of the function corresponding to f as in 
the abstract definition.   

FD ! 
owl:Thing  
!antecedent only Path 
!antecedent min 1 
!consequent only Path 
! consequent max 1 
=rootClass exactly 1 
! hasFunction max 1 

For the case of keys, a sub-property of rootClass called keyRootClass has been 
defined. Any FD definition featuring this subproperty instead of rootClass should be 
interpreted as a FD key definition. 

The Path class, referenced by the antecedent and consequent contains a list of 
property references called owlfd:PartList. The PartList class is an extension of 
the generic rdf:List, specializing the rdf:first and rdf:last properties. In order 
to make the PartList an ordered list of references to properties, the “first” property of 
this list can only accept rdf:Property instances. The PartList definition is 
specified as: 

PartList !  
rdf:List 
!rdf:first only rdf:Property 
=rdf:first exactly 1 

!rdf:rest  only rdf:List 
=rdf:rest  exactly 1 

A Path is linked to a PartList through the parts property. A path must have one 
PartList. We give now the definition of a Path: 

Path!  
owl:Thing 
 !parts some PartList 
=parts exactly 1 

4.3 Subclasses of FD 
In addition three subclasses of FD have been defined: FDa,FDc and FDv. These 
subclasses correspond to the abovementioned interpretation types: assertions, 
constraints and views respectively: 

FDa !FD 
FDc !FD 
FDv !FD 

As we have seen in the previous section, these interpretation differences don’t have 
much impact on the abstract definition. In fact it is sufficient to use one of the three 
aforementioned subclasses (FDa, FDc or FDv) to get the expected results in terms of 
interpretations. 



5. Implementation 
Having described our approach for adding functional dependencies to OWL, we 

proceed now to describe a prototype implementation demonstrating the applicability of 
our ideas.  

5.1 Implementation design 
The starting point for implementation of functional dependencies for ontologies is 
definitely the FD constructs definition. We have described how FDs can be described in 
abstract terms and how this abstraction can be expressed using our OWL FD classes and 
properties (see Figure 5). It is important to notice that the FD definitions are 
independent from any actual implementation of the enforcement of the dependencies. 
The mechanisms to guarantee that the definitions hold could follow various different 
approaches. In this work we have focused on mapping the FD definitions to Horn clause 
rules. In the specific case of OWL, the SWRL language constitutes a concrete example 
of an effort unifying OWL DL and Horn clauses. We have already shown how to map 
the OWL FD definitions to rules. This mapping mechanism has been implemented for 
the three discussed interpretations. FD definitions and derived rules are based on 
predicates whose terminology is part of a known knowledge base.  

 
Fig. 5. FD Class in the ontology development tool Protégé. 

Instances of FD are functional dependency definitions for the ontology; Figure 6 
illustrates a Protégé OWL FD instance specification. Then, each path, such as 
FD_PilotAssigment with their PathLists in the Flight ontology, is also easily editable with 
Protégé. In this example, the Path is given by the PartList composed of properties 
scheduledAsFlight and managedByAirline (see Figure 7). 

 
  Fig. 6. FD antecedent and consequent. 

 



 
 
 
 

Fig. 7. Path with PartList. 

5.2 Mapping from OWL FD to SWRL 
 

We have developed a Java application that takes OWL FD definitions of an ontology 
and generates the corresponding set of SWRL rules. This procedure follows the 
mapping described in section 3. In the next subsections, we will reconsider the tax 
example of section 3.6, with the three variants of interpretation. Figure 8 shows a 
generated SWRL rule in the SWRL tab of Protégé [22]. 

 

 
Fig. 8. SWRL rule for tax FD. 

For the sake of simplicity in this example, the ftax function has been replaced by a 
simple multiplication function called multiply, which is available out of the box as a 
SWRL Built-In function and is supported in the basic package of the SWRL rule engine 
we used. Alternatively, we could have specified a more complex function and have 
implemented the intended behaviour using a Java class. 

In the following sections we present the variations according to the intended 
interpretation. 

5.2.1 Assertion SWRL rules 
To differentiate this kind of FD definitions, we use the FDa subclass of our FD class. In 
this first case the head of the rule, or the deduction of the rule evaluation, is a predicate 
that is added to the ABox of the knowledge base. This predicate is a property assertion 
of the kind propertyName(?variable1,?variable2). In the example, the propertyName is 
hasTax, the variable ?ticket represents a ticket individual matching the conditions in the 
rule’s body, and the ?i variable holds the result of the evaluation of the swrlb:multiply 
function over the variables ?age and ?depTax. These last two are the age of the passenger 
of the ticket and the tax of the departure airport. To add the results of the rule evaluation 



to the ABox, the user has to export the resulting predicate back to OWL through the 
Protégé interface. 

5.2.2 Constraint SWRL Rules 
These FDs are individuals of the subclass FDc. Contrary to FDa rules, these do not add 
any new assertions to the ABox as a result of FD evaluation. Instead, their enforcement 
checks whether existing ABox assertions are consistent with the FDc definitions. In case 
of hurting instances are detected, they are classified to the corresponding witness class, 
which holds the information about the individual who is violating the FDc constraint.  

A witness property in its most basic form indicates which individual violates the 
constraint and the expected instance value. In the tax example, if for some reason 
someone has asserted that hasTax(TICKET1,300), this contradicts the expected predicate 
hasTax(TICKET1,200). The following witness is produced: witnesstax(TICKET1,200). We can 
see the complete SWRL rule in the Protégé interface in Figure 9. 

Notice that the witness can grow in complexity, and the information it could 
eventually hold depends on how the witness property is modeled. This is similar to 
custom exceptions in a programming language. The witness properties are defined in 
their own constraint terminology set C, as described in section 3.7. The witness 
assertions are in turn stored in the C

A
 set. 

 

 
Fig. 9. Constraint SWRL rule.  

5.2.3 Views with SWRL Rules 
As we have already mentioned, the case of views is quite similar to that of new-
assertions. The chief difference is that the predicates of the head of the rules, the results 
of the rule evaluation, are not added to the ABox. They are computed at run-time during 
query processing. For example in the model of tax, equation (6), the ticket tax is 
computed and retrieved in a query, but never stored anywhere. For views the results are 
displayed in the context of query execution.   

6. Conclusions 
The extension of DL knowledge base with functional dependencies has been 
acknowledged as relevant in producing more expressive ontologies. In this work we 
investigate the extension of knowledge bases with three kinds of functional 
dependencies: classic, keys and featuring explicit functions. In fact, to the best of our 
knowledge, this is the first work in ontologies that explores functional dependencies 
with an explicit function relating dependent to determining properties. We propose a 



formal framework to extend ontologies with these three functional dependencies and 
study the different behaviors that can be considered when running FD as Horn clause 
rules. We identified three main types of interpretations for FDs: constraints, new-
assertions and views; and show how to integrate them within a common structure. The 
conceptual representation is implemented in OWL by a new OWL FD concept that can 
be added to any OWL ontology. This concept holds all the attributes of an FD as 
properties and its instances are called functional dependency definitions. Moreover, a 
mapping function translates FD assertions into SWRL rules, allowing inferences to 
produce the desired FD behavior. The framework has been implemented in an initial 
prototype under Protégé and using Jess as the rule execution engine. 

Our approach to extend the knowledge base with a new FD class has both advantages 
and disadvantages. An advantage is that it can be easily adopted without requiring any 
extension to the ontology language. Furthermore, as the FD evaluation is done through 
SWRL on instances in the ABox, it does not affect subsumption reasoning in the 
TBOX. It turns out that this same aspect can be seen as a disadvantage as subsumption 
cannot be expressed over constrained concepts with FD. 

One of the main problems with functional dependencies and especially keys, is to 
evaluate equality. A pragmatic option is to define equality based on datatype properties 
of individuals, but this is a whole subject on its own and may deserve a deeper analysis. 

Another interesting issue that we leave for future investigation is the case of key FD 
with multi-valued non-key attributes, in addition to the paths and FDs that we have 
modeled over single valued properties in this paper. In this scenario, deciding on 
equality of sets seems not evident. Similarly, if properties in the head of a FD are 
allowed to be multi-valued, then existential quantification over the set is required. 
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