
Ontology authoring with FORZA

C. Maria Keet
School of Mathematics,
Statistics, and Computer

Science, University of
KwaZulu-Natal

UKZN/CSIR-Meraka Centre
for Artificial Intelligence
Research, South Africa
keet@ukzn.ac.za

Muhammad Tahir Khan
Fondazione Bruno Kessler

Trento, Italy
tahirkhan@fbk.eu

Chiara Ghidini
Fondazione Bruno Kessler

Trento, Italy
ghidini@fbk.eu

ABSTRACT
Generic, reusable ontology elements, such as a foundational
ontology’s categories and part-whole relations, are essential
for good and interoperable knowledge representation. Ontol-
ogy developers, which include domain experts and novices,
face the challenge to figure out which category or relation-
ship to choose for their ontology authoring task. To reduce
this bottleneck, there is a need to have guidance to handle
these Ontology-laden entities. We solve this with a generic
approach and realize it with the Foundational Ontology and
Reasoner-enhanced axiomatiZAtion (FORZA) method, con-
taining DOLCE, a decision diagram for DOLCE categories,
part-whole relations, and an automated reasoner that is used
during the authoring process to propose feasible axioms.
This fusion has been integrated in the MoKi ontology de-
velopment tool to validate its implementability.

Categories and Subject Descriptors
M.8 [Knowledge Reuse]: Miscellaneous; I.2.4 [Knowledge
Representation Formalisms and Methods]: Knowl-
edge base management; H.4 [Information Systems Ap-
plications]: Miscellaneous

Keywords
Ontology engineering, Foundational Ontology, Part-Whole
relation, Q/A decision system, Ontology Alignment, Rea-
soner

1. INTRODUCTION
The need for effective support for ontology developers—

which often include domain experts and novice modellers—
in the process of authoring OWL ontologies, is increasingly
recognised (see e.g., [2, 16, 18]) as a crucial step to make the
construction of ontologies more agile and apt to the needs
of organisations and business enterprises.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CIKM’13, October 27 - November 01 2013, San Francisco, CA, USA.
Copyright 2013 ACM 978-1-4503-2263-8/13/10 ...$15.00.
http://dx.doi.org/10.1145/2505515.2505539.

Providing domain experts with this kind of support re-
quires being able to face and solve important challenges that
concern the formalisation of knowledge. Among the chal-
lenges that need to be faced, is providing assistance to on-
tology developers in answering a list of crucial questions that
arise while writing an ontology: where do I start?, what can I
reuse from another ontology?, how/where do I add classes?,
and and how do I relate them?. These questions usually
arise when capturing in a logic the output of an ‘intermedi-
ate stage’ or ‘conceptualization’, as suggested in METHON-
TOLOGY [3], and in scenarios 1-8 in the NeOn methodology
for networked ontologies [17]. Regarding the latter question,
concrete examples of ontology authoring concerns are, e.g.,:

• “Is a Theatre performance an object or some process?”
(an event that unfolds in time),
• “should I add Tourist as a subclass of Person, or is

Tourist a role that can be played by Person and thus
relate the two with an object property expression in-
stead of a subclass axiom?” (role/bearer is ontologi-
cally better defensible),
• “How is Mapungubwe National park a proper part of

South Africa or is it proper located in South Africa?”
(proper located in is more precise),
• “does a tourist participate in a sightseeing tour or is the

tourist part of a tour?” (participation, not parthood),

which may be difficult to answer by domain experts and
novice modellers without any extra support.

Generic, reusable ontology elements, such as a founda-
tional ontology’s categories (e.g., process, physical object,
role), domain-independent relations (e.g., part-whole rela-
tions, participation), and ontology design patterns [14] in
the case of small scenarios, can help ontology developers in
answering such questions, improve the quality of the ontol-
ogy, and also speed up the ontology development process,
as shown in [6, 8] for the case of foundational ontologies
and domain-independent relations. However, also reusing
entities and selecting relations from existing ontologies is a
complex task (e.g., [13]). In the case of foundational on-
tologies, having to delve into the documentation requires a
massive effort, often without a clear sight upfront on return
on investment. Moreover, assuming that a list of domain
concepts (OWL classes) already exist, how does an ontology
developer link them to the foundational ontology? and how
does an ontology developer relate them to each other using
relations from a foundational ontology?, be this for inter-
operability or ontology quality purposes. Finally, assuming

that manual informed guesses are performed in order to se-
lect and reuse entities and relations, these guesses are only
checked for logical consistency after the addition step, mak-
ing the whole process labour-intensive and highly iterative.
Evaluation of OntoPartS tool [8] has shown it provides
successful automated guidance in selecting part-whole rela-
tions, but also showed a bottleneck in the manual selection of
categories from the DOLCE foundational ontology that re-
duced its effectiveness. Little methodological and tool-based
support is given to ontology developers on how (where) to
link a domain ontology to a foundational one and/or how to
reuse any of the knowledge represented in the foundational
ontology. Few exceptions are the paper-based OntoSpec [5],
the not publicly available implementation of TMEO [12],
and the publicly available OntoPartS tool [6, 8].

This paper aims at tackling these problems in ontology
authoring by supporting an intelligent usage of foundational
ontologies and other already represented knowledge to help
ontology designers during this process. While the method
is very general—catering for several combinations of man-
ual design and automated support—the main idea for an
intelligent automated support relies on making use of: (i)
a question/answering (Q/A) system to support linking the
domain ontology with reusable general or foundational on-
tologies, and (ii) an automated reasoner in supporting the
selection of relations from general pre-existing ontologies.

More in detail, the contribution of this paper is presented
as a three-step process from the generic to the specific. First,
we present a novel general method—GENERATOR: Guided
ENtity reuse and class Expression geneRATOR—for the
reuse of already represented knowledge in such a way that
it guides the modeller toward the comparatively best op-
tions of possible axioms to add. This general method con-
tains three variable steps to cater for several scenarios: it
can be realised manually or automated, with or without a
foundational ontology, and with or without linking entities
from a domain ontology to a foundational ontology. Sec-
ond, we instantiate and provide automated support for GEN-
ERATOR in a particularly important and general scenario,
where a domain ontology has to be linked to the founda-
tional ontology DOLCE [10] in order to reuse a taxonomy
of part-whole relations (called mereoTopoD, which is com-
patible with DOLCE). The resulting instantiation, called
FORZA (Foundational Ontology and Reasoner-enhanced ax-
iomatiZAtion), includes automated support for the linking
with DOLCE categories based on a novel decision tree to
categorise a subject domain class as a subclass of a DOLCE
class (named D3), and a novel algorithm that uses an auto-
mated reasoner to compute the applicable part-whole rela-
tion(s) between the selected classes (named OntoPartS-2),
which avoids the common post-hoc checking and instead
uses the reasoner to guide the ‘trial’ phase and reduce errors.
FORZA is tailored to meet the characteristics of DOLCE
and mereoTopoD, but does not depend upon the specific
domain at hand. It can thus be used to foster the reuse of
domain-independent elements and relations from DOLCE
and mereoTopoD in any concrete setting. Third, we provide
a proof-of-concept implementation of FORZA by means of an
implementation of D3 and OntoPartS-2 that can be reused
across ontology development environments. The FORZA
method with D3 and OntoPartS-2 has been integrated into
the MoKi ontology development environment [1], so that it is
now available for use. The paper is structured accordingly.

2. AN EXPLANATORY USE CASE
The “tourism ontology” use case introduced in the follow-

ing example is used throughout the paper to discuss and
illustrate the ideas and the FORZA method we propose.

Example 1. A tour operating agency aims at providing
the best travel plan and recommendations to their customers,
based on their interest and preferences, such as length of
travel, mode of transportation, accommodation type, and ac-
tivity theme. In order to do so, the agency has to retrieve a
number of accurate information about touristic destinations
and best possible routes available. The agency is proposed
with an approach that makes use of semantic technologies
(and in particular ontologies) to solve information integra-
tion problems that arise from the collection of the required
information from different sources.

Aided by a knowledge engineer, they start the development
of the domain ontology by identifying five tourism sub do-
mains of interest: Region, Event, Accommodation, Attrac-
tions, and Transportation, and by building an initial taxon-
omy covering all these sub domains. After this initial stage,
the tour operating agency decides to carry on building the
domain ontology in-house without the support of the knowl-
edge engineer in order to reduce costs.

Along with refining the taxonomy, one of the key tasks
that needs to be performed is the definition of relationships
(object property expressions) between the entities present in
the ontology. Since defining well founded relationships is a
complex ontology engineering task, the experts of the tour op-
erating agency decide to use the GENERATOR method (and
its FORZA realisation) to facilitate them in selecting and
reusing relations from general pre-existing ontologies, thus
reducing the intervention of knowledge engineers, speeding
up the ontology development process, and inserting high-
quality knowledge in their ontology.

3. THE GENERATOR METHOD
In this section, we describe the general method for logic-

based and ontology-driven ontology authoring that we pro-
pose. The method is independent from whether its imple-
mentation is (semi-)automated and independent of the cho-
sen ontology language. That is, it equally well can be re-
alised manually with one or more ontologies formalised in a
higher-order logic or semi-automated with OWL ontologies
and OWL automated reasoners. For the sake of generality
we envisage two scenarios, graphically illustrated in Figure
1: a scenario“A” in which the experts perform the authoring
of their domain ontology with the help of one or more foun-
dational ontologies, and a scenario “B” in which the experts
perform the authoring of their domain ontology without the
support of foundational ontologies. Thus, scenario A is en-
visaged especially for the enhancement of small ontologies
or mere taxonomies, and for all the cases in which the users
aim at maximise the reuse of already existing knowledge,
while scenario B provides the freedom of using the method
without committing to any pre-existing knowledge external
to the domain ontology. We describe our method in two
stages: the required materials and the method.

3.1 Materials
Regardless of the scenario, the application of the method

requires the following materials, with the key aspects in ital-
ics font, which have to be set up only once (that is, not for

?

R

S

Foundational ontology

Domain
ontology

1

2

3

4

C D

C D

?1

W

R

V
S

T3

4.1

4.2

Domain ontology

A.

B.

Figure 1: Depiction of the general idea of GENERA-
TOR. Scenario A: a domain ontology and a founda-
tional ontology; Scenario B: procedure when using
only one ontology (see text for explanation).

each axiom one contemplates to add to the ontology to be
enhanced):

• A (top-)domain or reference ontology Od to be ex-
tended;
• In the case of scenario “A”, one (or more) foundational

or high-level relational ontologies, Of1, Of2, . . . , Ofn.
• The ontology or ontologies (Od and Ofi) should have

one or more relationships (object properties) whose do-
main and/or range have been declared (and therewith
have a language with which one declare this);
• Optionally, an ontology development environment for

ontology authoring;
• Optionally, if partial automation is desired: an auto-

mated reasoner with the minimum capability of travers-
ing the taxonomy upwards;

In order to tackle scenario “A”, the domain ontology Od

should be aligned with the foundational ontologies Ofi. In
the case where this alignment is not present, the method
provides a capability to do this during its application either
by manually selecting the category or through a decision
diagram to guide the modeller to select the appropriate cat-
egory in the foundational ontology Ofi for the selected do-
main and/or range classes of the domain ontology Od. This
alignment is either permanent or may be used just during
the axiom selection process.

For our running example, we make the following choices.

Example 2. In order to use the GENERATOR method to
extend the tourism ontology (our Od) presented in Example 1
we have to choose whether we want to make use of a foun-
dational ontology or not. Since the ontology only consists of
a taxonomy, it is more appropriate to do so. For the sake
of the example we also assume that Od is still to be linked
permanently to a foundational ontology. Among the avail-

able foundational ontologies, we select DOLCE as Of1 (the
selection and an explanation can be obtained from the ON-
SET recommender tool [9]). Moreover, upon inspection, the
tourism ontology is lacking in part-whole and mereotopologi-
cal (parthood and location) relations, and therefore we decide
to include the mereoTopoD ontology (see [8]) as additional
foundational ontology Of2. The tourism ontology is repre-
sented in OWL, hence, we can use some Semantic Web tools,
such as Protégé or MoKi, as ontology development environ-
ment.

3.2 The method
Let us consider the most complex case of scenario A of

Figure 1, where a modeller has a domain ontology and a
foundational ontology. She first selects the domain and
range classes she wants to relate somehow (step (1) in Fig-
ure 1-A). Then (step 2), she has to check the alignment of
the selected classes to the relevant categories in the founda-
tional ontology. Here there are several cases: (i) the align-
ment already exists, so this step is completed automatically
in the background, (ii) the alignment is carried out manu-
ally if the modeller knows the foundational ontology well,
or (iii) the modeller chooses to be guided by the decision
diagram that is specific to the selected foundational ontol-
ogy. If the alignment does not exist yet, the modeller can
choose to save it permanently or just use it for the duration
of the application of the method. Step (3) consists in mov-
ing up in the taxonomy to (automatically) find the possible
object properties. While step (3) can be done manually,
or else with a quick script to retrieve a class’s parent class
in the machine-interpretable version of the ontology, there
is a distinct advantage to using a reasoner besides saving
oneself analysis and coding time: taxonomic classification,
which offers the most up-to-date class hierarchy—including
implicit subsumptions in the class hierarchy—and therewith
avoiding spurious candidates. From a modeller’s viewpoint
and assuming automation, then one only has to select which
classes to relate, and, optionally, align the ontology, and the
software can handle the rest, as each time it finds a domain
and range axiom of a relationship in which the parents of
C and D participate, it is marked as a candidate property
to be used in the class expression. Finally, the candidate
properties are returned to the user (step 4). Not shown in
the diagram but equally possible, is the use of a separate
relation ontology, as in our Example 2, which typically is a
variant of scenario A: the modeller uses a relation ontology
to axiomatise the base ontology by adding relations to it.
In this scenario, the base ontology is also traversed upwards
and on each iteration, the base ontology class is matched
against relational ontology to find relations where the (par-
ent of the) class is defined in a domain and range axiom, also
until the top is reached before returning candidate relations.
Scenario B is similar to A regarding traversing the domain
ontology upwards to find the candidate relations, but with-
out the step of alignment to the foundational ontology.

Given the labels in Figure 1, the computed suggestion
to relate C and D for scenario A is object property R. For
scenario B, it suggests both W and its super property R. It is
then up to the modeller to select among the available choices
and save the selection into the ontology. Algorithmically,
the process is summarised in Figure 2; the actual algorithm
comprises two pages, which will be illustrated more in depth
in Section 4.

Figure 2: Summary of the selection algorithm, represented as a flow chart.

Thus, GENERATOR exploits the use of already declared
knowledge in an ontology—be that its own or a borrowed
one—and the use of manual or automated reasoning to com-
pute the rest, thereby narrowing down the possible set of re-
lations that can exist between two classes. Moreover, neither
manual searching and assessment is strictly necessary any-
more, nor will the selection result in an inconsistency based
on that relation between the two selected classes alone1.
Hence, it can greatly reduce the cognitive overload during
ontology authoring of, especially, large ontologies, it fosters
reuse of already well-researched knowledge, especially in sce-
nario A, and by using a foundational ontology, it also antic-
ipates easy mappings with other ontologies.

4. THE FORZA REALIZATION

Example 3. Continuing with our use case, DOLCE and
mereoTopoD are already aligned with each other. Therefore,
we only have to link them and the tourism ontology. Since
the experts of the tourist information office are not famil-
iar with DOLCE, they choose to link their domain ontol-
ogy by means of the decision diagram support provided by
the method. The (subsumption axioms describing the) link-
ing with DOLCE along with the taxonomy of part-whole and
mereotopological relations are then saved in the OWL file.

As illustrated in Example 3, in order to continue with
their task of selecting and reusing relations from general
1it does not, however, prevent other possible inconsistencies;
e.g., conflicting cardinalities is a typical pitfall.

pre-existing ontologies, the experts of the tourist informa-
tion office now require a concrete instantiation of scenario
A of the GENERATOR method described in Section 3 to a
concrete foundational ontology and to a source of domain-
independent part-whole relations; in fact, it requires the
most comprehensive realisation. In this section we provide
a description of such an instantiation where we aim at guid-
ing ontology authors in linking their domain ontology with
the DOLCE foundational ontology [10] and in the selection
of part-whole relations taken from the relation ontology of
part-whole relations (compatible with DOLCE) mereoTo-
poD [7, 8]2. The specific instantiation of GENERATOR de-
scribed here is called FORZA. It provides: (i) a decision
tree to facilitate linking classes in the domain ontology to
DOLCE categories, implemented as a tool called D3, and (ii)
computation of the applicable part-whole relation(s) using a
reasoner, which is implemented in the OntoPartS-2 tool that
extends OntoPartS [8]. Although we illustrate it with a
domain ontology in the tourism sector and with part-whole
relations, the Q/A system illustrated in Section 4.1, and the
selection algorithm illustrated in Section 4.2 and Figure 2
are general enough to cover a wide range of domains and re-
lation types. Recall that while FORZA is tailored to DOLCE
and mereoTopoD, it certainly does not depend on the sub-
ject domain of the ontology at hand, like the tourist domain
in our running example. It can therefore be used to foster
the reuse of domain independent elements and relations in
any concrete setting.

2
http://www.meteck.org/files/ontopartssup/MereoTopoD.owl

4.1 Using D3 to link the ontology to DOLCE
Here we illustrate step (2) in Figure 1 in the scope of

the FORZA method, where classes of a domain ontology are
linked with appropriate DOLCE categories. We have chosen
DOLCE as it is a foundational ontology describing very gen-
eral entities by means of a rich and precise axiomatisation
and it can serve to support the construction of domain spe-
cific ontologies [15, 4]. In our example, moreover, DOLCE
has been chosen as it fits well with the mereoTopoD ontology
of part-whole relations [7, 8]. In other words, the selection
of the appropriate DOLCE category triggers the selection
of appropriate part-whole relations by using an extension of
OntoPartS [8] (described in Section 4.2).

The selection of appropriate categories from a founda-
tional ontology is known to be a difficult task. The problem
can become even bigger when the ontology authors are do-
main experts or novices, who do not have the necessary back-
ground in formal ontologies to fully understand DOLCE. We
solve this bottleneck by introducing the feature of a deci-
sion diagram, or ‘Question and Answer (Q/A)’ approach.
The Q/A decision system, called DOLCE Decision Diagram
(D3), asks the user one or more closed questions and de-
pending on the answers given by the user, the system will
propose the category. The one we propose for the DOLCE
ontology is based on the fundamental ontological distinc-
tions embedded in DOLCE itself and is shown in Figure 3.
Thus, if we have to link a class “X” to DOLCE we start
traversing the DOLCE taxonomy asking the ontology au-
thor whether “X” is wholly present, perceived, does not exist
in space nor time, or is happening/occurring, which capture
the fundamental ontological distinction between Endurant,
Quality, Abstract and Perdurant. More precisely, we ex-
ploit DOLCE’s disjointness axioms between subclasses, the
descriptions of the categories augmented with the more in-
formal WordNet descriptions, and the examples described
in DOLCE’s documentation. We illustrate the usage of D3
with our explanatory use case in the following example3

Example 4. Let us assume that our domain experts have
to link the concepts of their domain ontology, and in partic-
ular the concept Carnival (used to describe events such as
the famous Venice Carnival), to a DOLCE category with
the help of D3. An example of the interaction between the
user and the system may be as follows:

D3: Is Carnival something that is a happening or an
occurring?

User: Y es

D3: Are you able to be present or participate in a Car-
nival?

User: Y es

D3: Is Carnival Atomic, i.e., it has no subdivisions and
has a definite end point?

User: No

Here D3 uses the answers to traverse the DOLCE taxonomy
presented in Figure 3 and terminates by suggesting to link
Carnival to the DOLCE category Accomplishment. Like-
wise, the experts of the tour operating agency can use D3 to
3For the example, we assume that the taxonomy produced
by the domain experts is the simplified version of the travel
ontology at protege.cim3.net/file/pub/ontologies/travel/
travel.owl, which is available at sourceforge.net/projects/
cikmontology/files/tour.owl/download

link CarnivalPartyGoer as follows:

D3: Is CarnivalPartyGoer wholly present at any time
of its existence?

User: Y es

D3: Is CarnivalPartyGoer a collection of things, regard-
less of their spatial other differences?

User: No

D3: Does CarnivalPartyGoer not take up space or does
CarnivalPartyGoer need some other object to exist
in, or is CarnivalPartyGoer a role played by some
object? (e.g., a student)

User: Y es

D3: Is CarnivalPartyGoer dependent on a community
of (>1) agents or embedded in some social setting?

User: Y es

Following the answers in the tree in Figure 3 CarnivalPar-
tyGoer will be linked to the DOLCE category Social Object.

The idea of a Q/A system for the selection of DOLCE
categories is not new. Similar work has been done in the
TMEO Methodology using a particular version of DOLCE
called DOLCE-spray [12]. TMEO (Tutoring Methodology
for the Enrichment of Ontologies) is a semi-automatic in-
teractive Q/A system for guiding humans in the population
of Italian semantic resources. The aim of TMEO is to se-
lect the most appropriate category from a reference ontol-
ogy as a superclass for a given lexicalised concept. Com-
pared to our work, TMEO is in Italian and it mainly fo-
cuses on DOLCE-spray, which is a specific, not freely down-
loadable, version of DOLCE that is specialised for Italian
semantic resources. DOLCE-spray covers only 6 DOLCE
categories, compared to the 24 core categories of our deci-
sion tree, which hampers its reuse, and it contrasts with the
relatively widely used DOLCE-lite OWL file. Notably, D3
covers the entire core DOLCE taxonomy except the 3 sub
categories of Region (Abstract, Physical, and Temporal Re-
gion), and the part-whole relations taxonomy uses, among
others, DOLCE’s Perdurant and Social Object that are not
present in DOLCE-spray but are in DOLCE-lite. Note that,
in addition to linking already existing domain concepts, D3
can also be used to create new domain concepts and imme-
diately link them to DOLCE.

D3 is implemented on top of a tree (shown in Figure 3)
where nodes can have binary or multiple branches. For bi-
nary selection points, the user will be asked one Yes/No
question. In the case of more than two branches, the sys-
tem will present a multiple choice question to the user (one
item for each branch) so that she can select the best possible
option. While having multiple questions sometimes can be
necessary, single Yes/No questions are simpler to handle for
users. For this reason, we have made an attempt to maxi-
mize them by adding, where appropriate, temporary nodes;
an example is the node“Temp Entity” in Figure 3, compared
to the original DOLCE taxonomy that has Arbitrary Sum,
Physical Endurant and Non-Physical Endurant all directly
subsumed by Endurant.

4.2 Reasoner-enhanced selection of part-whole
relations

In this section we describe an instantiation of steps (3)
and (4) of Figures 1 and 2, where candidate relations are

Figure 3: The Decision Tree of D3: the Perdurant branch is implemented as binary tree and the rest having
more than two branches; a single branch can be selected at a time.

returned to the ontology authors. Because we chose the most
comprehensive scenario with an additional relation ontology
of part-whole relations, we first describe the taxonomy of
part-whole relations we use, and then the reasoner-enhanced
algorithm used to propose relations.

4.2.1 Part-whole relations
Part-whole relations have been investigated in conceptual

data modelling, ontologies, and Ontology, and many rela-
tions have been been proposed as a kind of part-whole re-
lation. We use a taxonomy of part-whole relations that is
based on an ontological investigation and adapted to the
Semantic Web setting as an OWLized object property hi-
erarchy aligned with DOLCE (i.e., mereoTopoD). This tax-
onomy is based on [7, 8] and contains 23 part-whole rela-
tions. Summarising the taxonomy, a first main distinction
is made between merely meronymic part-whole relations,
such as member-of and constituted-of, and mereological part-
hood with its basic refinements to cater for different do-
main and ranges; e.g., a structural parthood for objects ver-
sus an involved-in to represent processes and part-processes.
The latter main branch is refined further with mereotopo-
logical relations, such as non-tangential-proper-part-of and
non-tangential-proper-located-in, which are required for cer-
tain subject domain; e.g., to derive that country Lesotho is
landlocked and wholly enclosed in another country (South
Africa), for image annotation and analyses, and anatomy.
All relations in this extended taxonomy of part-whole rela-
tions have domain and range restrictions using DOLCE cate-
gories, which facilitated greatly the design and development
of the OntoPartS tool [8] and this feature is exploited fur-
ther in OntoPartS-2. For the current purpose, also inverses
of the part-whole relations have been declared (except for
the mereotopological equal relations) which may increase its
usage. Informal, yet to be investigated, feedback and pre-
liminary domain ontology analysis revealed that modellers
seem to prefer explicit inverses when the ‘direction’ of the

relation—i.e., the so-called “all-some” pattern—goes from
whole to part. For instance, in OWL 2 (in DL notation),
the class expressions Computer v ∃hasProperPart.CPU and
Computer v ∃properPartOf−.CPU are the same with respect
to the subject domain semantics and correct with respect to
reality (and it is not the case that each CPU in existence
is a proper part of a computer), but the former way of ax-
iomatising the knowledge appears more often. This brings
the total amount of part-whole relations to 44.

4.2.2 Selecting part-whole relations with OntoPartS-2

Here we describe the workings of OntoPartS-2 using the
bottom half of Figure 2. Once the domain and range classes
from the domain ontology that play the part and whole
have been selected in step (1), there are three options: (i)
manually align them to DOLCE, (ii) use D3 to align them,
and (iii) the domain ontology is already aligned; OntoPartS-
2 caters for each of them. The alignment, if not already
present, is stored in the ontology. This brings us to the
reasoner-enhanced component, where we traverse upwards
in the class taxonomy (step 3). A call is issued to the rea-
soner to get the parent class of the classes selected in step
(1) and it checks whether that class is in DOLCE, which
is repeated upward in the class hierarchy until the DOLCE
class is found. Once a DOLCE OWL class is reached, it
makes a call to the function to check whether that class is
a domain (respectively, range) in one of the domain (resp.
range) axioms from the taxonomy of part-whole relations;
e.g., involved-in has as domain and range DOLCE’s Perdu-
rant. As a minor optimization step, the range class—i.e.,
a parent of D in Figure 1—is checked only if the domain
matches. If there is a match, i.e., the domain and range of
the part-whole relation are parents of both the domain on-
tology’s part and whole classes that were selected in step (1),
then the matched relation is retrieved and stored in a tem-
porary in-memory storage. This holds for automated ‘dis-
covery’ of both the relation and its declared inverse, where

[[Image:Damavand in winter.jpg]]
A '''mountain''' is a large [[landform]] that stretches above the
surrounding land in a limited area usually in the form of a
peak. A mountain is generally steeper than a '''[[hill]]'''.
....

<owl:Class rdf:about="#Mountain">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Landform"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class>
 <owl:intersectionOf
 rdf:parseType="Collection">
 <owl:Class>
 <owl:complementOf>
 <owl:Class rdf:about="#Hill"/>
 </owl:complementOf>
 </owl:Class>
 <owl:Class>
 <owl:complementOf>
 <owl:Class rdf:about="#Plain"/>
 </owl:complementOf>
 </owl:Class>
 </owl:intersectionOf>
 </owl:Class>
 </rdfs:subClassOf>
 </owl:Class> …..

(u
ns

tru
ct

ur
ed

 c
on

te
nt

)
(s

tru
ct

ur
ed

 c
on

te
nt

)

(u
ns

tru
ct

ur
ed

)
(fu

lly
-s

tru
ct

ur
ed

)

A mountain is a large landform that stretches above the
surrounding land in a limited area usually in the form of a
peak. A mountain is generally steeper than a hill [....]

Wiki Page Access Mode

(li
gh

tly
-s

tru
ct

ur
ed

)

Figure 4: The MoKi page for the OWL class Mountain.

the inverses are retrieved for the relations stored in mem-
ory as an effort to reduce computational time. This process
of traversing upwards, matching relations, and storing them
continues until the top is reached. Thus, it automatically
reduces the possible set of part-whole relations for the se-
lected domain ontology classes to only the (onto-)logically
viable ones, without the modeller having to conduct manual
cross-checking between each object property, its domain and
range, and the position of the classes in the hierarchy. In
the final step (step 4), the memory storage is checked to see
if there are relations stored there; if so, all found relations
are returned to the user, if not, then the user will be no-
tified that no suitable relations were found for the selected
(DOLCE categories aligned with the) part and whole. The
following example illustrates the algorithm.

Example 5. Let us continue with our example and as-
sume that the experts of the tour operating agency want to
relate CarnivalPartyGoer to Carnival. The following hap-
pens, given our current scenario and part-whole relations:

1. The modeller chooses CarnivalPartyGoer to play the
role of part and Carnival to play the role of the whole.

2. OntoPartS-2 gets the parent class of CarnivalParty-
Goer, and its parent class, and so on, until it reaches
SocialObject, which is the DOLCE category it was
aligned with (recall Example 4).

3. It checks whether SocialObject is declared as a domain
of an object property. It is a domain of member-of.

4. It iteratively moves up further in the hierarchy, and
finds as parent class Endurant, which is the domain of
participates-in, and s-part-of.

5. A similar process occurs with Carnival. Moving up au-
tomatically in the class hierarchy, the first DOLCE
class it encounters is Accomplishment (recall Exam-
ple 4).

6. It checks whether Accomplishment is a range for mem-
ber-of, participates-in and s-part-of. It is not.

7. It continues upward in the DOLCE hierarchy and checks
whether that class is a range for member-of, partici-
pates-in, and s-part-of. This holds for Perdurant, which
is a range for participates-in.

8. The top-class is Particular, which does not match ei-
ther candidate relation.

9. Finally, it returns the only viable relation: participates-
in.

This can then be saved into the ontology; that is, the axiom
CarnivalPartyGoer v ∃participates-in.Carnival can be added. In
case the modeller is also interested in the inverses, OntoPartS-
2 will get the inverse relation for the matched object property
participates-in instead of computing it from scratch.

The only other tool that provides guidance in selecting
part-whole relations is OntoPartS [8]. OntoPartS-2’s im-
provements over OntoPartS are manifold. It uses the
OWLized version of DOLCE and a reasoner to traverse the
hierarchy upwards to narrow down the possible set of part-
whole relations, compared to having a hard-coded DOLCE
taxonomy and hand-crafted rules. It incorporates the D3
decision diagram for selecting DOLCE categories instead of
providing examples when hovering over the DOLCE cate-
gory when a category had to be selected. In addition, one
can save the alignment of the domain class to the founda-
tional ontology or one did not need to select it in the first
place, whereas in OntoPartS, this process has to be re-
peated each time regardless whether the domain ontology
was already aligned or not. Finally, OntoPartS-2 offers users
the freedom to select the ‘direction’ of the chosen part-whole
relation, opting for an axiom from the part to the whole or
its inverse or both, versus the necessary conceptual leap of
an ObjectInverseOf axiom. The first improvement makes
the process more reliable and maintainable, the second re-
solves a noted bottleneck of OntoPartS [8], the third one
reuses already provided knowledge in the process, saving the
modeller any repetition, and the fourth one meets a cogni-
tive and OWL 2 feature issue regarding the explicit inverses.

5. IMPLEMENTING FORZA

Here we describe the current implementation of the FORZA
method. First, we briefly describe the implementation of D3
and OntoPartS-2 as stand-alone tools, and then how we have
integrated them in the collaborative ontology authoring tool
MoKi [1].

5.1 D3 and OntoPartS-2

The D3 system is designed as an interactive decision tree,
implemented with HTML, CSS and JavaScript. As this sys-
tem is realised as a client-side application, it will allow its
integration with any web based application. The set of ques-
tions for guiding the users are stored in a XML file. This
approach provides the flexibility of updating or modifying
the set of questions independently of the front-end applica-
tion.

The algorithm summarised in Figure 2 has been imple-
mented by using Java at the back-end and the OWL API
(v3.3) to interact with the ontologies. The back-end applica-
tion contains the main logic for the tool and all the required
libraries. It has been aggregated in a jar file stand-alone ap-
plication that can be called by any external interface. Cur-
rently, OntoPartS-2 is customised to the FORZA scenario4

but it is easily customisable for all the combinations illus-
trated in Figure 1.

5.2 Integrating FORZA in MoKi

MoKi [1] is a collaborative MediaWiki-based [11] tool where
heterogeneous teams of knowledge engineers and domain ex-
perts, with different knowledge engineering skills, can ac-
tively collaborate to the modelling of ontological knowledge.
MoKi is grounded on three main pillars, which we briefly
illustrate with the help of Figure 4:

1. Similarly to most state of the art wiki-based tools,
MoKi associates a wiki page to each each basic en-
tity of the ontology (i.e., classes, object and datatype
properties, and individuals);

2. Each wiki page describes the entity it is associated with
by means of both unstructured (e.g., free text, images)
and structured (i.e., OWL axioms) content.

3. A multi-mode access is provided to support both do-
main experts and knowledge engineers in the authoring
process. In particular, MoKi provides two modes to ac-
cess the structured formal content: a fully-structured
access mode, where knowledge engineers can edit the
ontology content by means of OWL axioms, and a
lightly-structured access mode, where domain experts,
can edit the ontology content by means of a simplified,
form-based, view on the (same) structured formal de-
scription.

As argued extensively in [1], one of the advantages of
MoKi, and of MediaWiki-based tools in general, is the abil-
ity of easily customising their form-based user interface to
support the involvement of domain experts. This has made
MoKi, and in particular the lightly-structured access mode
form-based interface for domain experts, the natural candi-
date for the integration of FORZA in an ontology authoring
tool.

In a nutshell, the main idea of the integration of FORZA in
MoKi is to load both the domain and foundational ontologies
in MoKi, and to extend the form-based lightly-structured ac-
cess mode interface to accommodate for the user interface of
the Q/A system D3 and for the suggestions of OntoPartS-2.
Now we will illustrate the tool by means of a possible walk-
through,Êwhich is described in Example 6 and Figures 5
and 7.

4Jar files are available at: sourceforge.net/projects/
cikmontology/files/CIKM2013.zip/download

Figure 5: Linking with DOLCE in MoKi.

Figure 6: Aligning Room from the domain ontology
to the DOLCE category PhysicalObject with D3.

Example 6. Suppose that after selecting the relation be-
tween Carnival and CarnivalPartyGoer of Example 5, the
domain expert has to figure out what relation exist between
the classes Room and Hotel of her domain ontology. She
loads the initial taxonomy into MoKi and selects the Room
and Hotel classes that are to be related by means of a part-
whole relation in a dedicated interface (see (1) in Figure 5).
If these entities are already aligned with DOLCE, then MoKi
will automatically show them in the “Dolce Category” text
box, otherwise the user will have to select them either man-
ually using a drop down menu (see (2) in Figure 5) or by
clicking the “Assist” button next to the “Dolce Category” text
box. This will make the Q/A support appear (see (3) in Fig-
ure 5). Once the user has submitted her initial choice, the
system proceeds with the other questions as follows (we omit
the MoKi screenshots for lack of space)

D3: Is Room a collection of things, regardless of their
spatial or other differences?

User: No

D3: Does Room not take up space or does Room need
some other object to exist in, or is Room a role
played by some object? (e.g., a student)

User: No

D3: Does Room exist insofar its host exist (like holes,
bumps, boundaries, or spots of color)?

User: No

D3: Is Room something that cannot be counted, or only
in specific quantities?

User: No

Figure 7: Selecting relations in MoKi.

D3 will select the DOLCE category PhysicalObject for
Room, and will present the result to the user for confirma-
tion, as shown in Figure 6. A “Back” button is present at
any time of the interaction to go back to the previous de-
cision point. A similar interaction is also performed for
the Hotel class, which is also linked to the DOLCE cate-
gory PhysicalObject. At this point PhysicalObject is used
to fill in the “Dolce Category” textbox in the MoKi interface
(see (4) in Figure 7), and the axioms Room v PhysicalObject
and Hotel v PhysicalObject are saved in the domain ontology
along with the imported DOLCE. Once aligned, the desired
concepts with DOLCE, the Q/A support closes and the do-
main expert can use the interface to specify the direction
of the relation that OntoPartS-2 should retrieve by selecting
one of the radio buttons in Figure 7 (see (5)). Then she
will press the “Get Relations” button to retrieve the set of
possible relations, which will be shown in the Found Rela-
tion section of the interface (see (6) in Figure 7). In the
background, OntoPartS-2 checks whether PhysicalObject is
declared as a domain of an object property and it finds that
it is defined as domain for member-of and constituted-of.
Now, it iteratively moves up further in the hierarchy until
the top class is reached, and finds as parent class Endurant,
which is the domain of participates-in and s-part-of. After
matching the domain and range of these retrieved proper-
ties (member-of, constituted-of, participates-in, and s-part-
of) with the parent classes of the Room and the Hotel, it
returns the only viable relation: s-part-of. Now the user
can select the desired relation from the list by clicking the
check box next to it and add this relation to the ontology by
pressing the “Save Relation” button. This will add the axiom
Room v ∃sPartOf.Hotel to the Tourism ontology along with
importing the part-whole relations taxonomy.

6. DISCUSSION
In Sections 3–5 we presented a rather elaborate method

to support the linking and reuse of existing knowledge in
the process of ontology authoring, and a practical imple-
mentation. Here we discuss first how the method addresses
the issues emphasised in Section 1, and subsequently con-
siderations about the design and realisation of the method
in practical implementations.

6.1 Ontology-driven ontology authoring
GENERATOR itself amounts to ontology-driven ontology

authoring in two senses: 1) by using higher-level, relatively
well-researched notions from Ontology with foundational on-
tologies or reuse of agreed-upon domain ontology knowledge
to add entities and axioms to an ontology, and 2) by exploit-
ing the logic-based representation and therewith automated

reasoning during the stage of adding knowledge to the ontol-
ogy. The first component provides a top-down approach for
answering the “Where to start? Where to add classes and
how to relate them? What can be reused?”, which is demon-
strated concretely with FORZA and its D3 and OntoPartS-
2. By availing of the foundational ontology, one increases
the ontology’s quality, prospect for reuse, and interoperabil-
ity with other DOLCE-aligned ontologies. Moreover, D3
saves the time of delving into the documentation for the
typical unambiguous cases, and its implementation as D3
can easily be reused in other ontology development efforts.
The reasoner-enhanced part-whole selection with OntoPartS-
2 saves the user from selecting the category of the class that
plays the part and that plays the whole, as was the case
for OntoPartS, and have this sorted out either by D3 or
directly through traversing the hierarchy upward to find all
candidate properties. Thus, we are now one step ‘up’ from
the post-hoc trial-and-error usage of automated reasoners.
To the best of our knowledge, it is the first time a reasoner
is used in ontology authoring in this way. The time to re-
trieve relations in the tourism and DMOP5 ontologies is 406
ms and 1408 ms, respectively, and the whole operation in-
cluding retrieving the DOLCE category for already aligned
classes is 1197 and 4267 ms, respectively, where in both cases
the OWLReasoner of OWLAPI was used. The difference
in time observed for these ontologies is proportional to the
depth of the branch and the number of properties defined in
the ontology.

6.2 Design considerations
The material necessary to instantiate GENERATOR for a

specific method, like FORZA, have to be set up only once and
thereafter they can be reused for the development of any do-
main ontology. Setting up such an instantiation, however,
is not trivial and it presupposes that at least some domain
and range axioms have been declared. The latter is cer-
tainly the case for foundational ontologies, but some might
find it a prohibitive requirement for the single-ontology sce-
nario, despite that it makes for a more accurate and pre-
cise ontology with respect what it is supposed to represent.
We stress, however, that the purpose here is axiomatisa-
tion, not preventing novices from encountering unexpected
deductions. Concerning FORZA, we chose to add explic-
itly the inverses, instead of using OWL’s ObjectInverseOf,
which is motivated by perceived user preference (a full in-
vestigation on this issue is planned for future work). FORZA
with OntoPartS-2 focuses on adding class expressions with
part-whole relations from a separate relation ontology, but
one equally well can extend OntoPartS-2 for any DOLCE ob-
ject property (there is a considerable overlap of properties
in DOLCE and mereoTopoD already anyway). Other possi-
ble extensions entail broadening the scenarios; e.g., guidance
on adding new properties, new OntoPartS-2 functionality for
ABox assertions, or adding an optional foundational ontol-
ogy selection step to GENERATOR.

Another consideration refers to the ability to produce an
adequate decision diagrams (Q/A system) for the founda-
tional ontology at hand. While the one presented in the
FORZA instantiation is general enough and reusable in sev-
eral cases, it does not aim at providing a base for a universal
Q/A system. From the experience of building D3, we can

5
http://www.dmo-foundry.org/download-DMOP

describe several considerations that should be taken into ac-
count in oder to successfully design a new decision diagram:

- Consider the description of the entities provided in the
ontology and its documentation and, if required, mod-
ify it to make it easily understandable for the users by
using ‘layperson terms’;

- Consult a lexical resource for ideas for informal defini-
tions of the entities if they are not already defined or
described in the ontology;

- Exploit disjointness axioms among classes in ontology:
they provide clear distinctions between entities that
facilitate designing closed questions;

- If more than one criterion applies, then combine them
together or select the best one that applies to that
category;

- Avoid using the term presented in one branch for defin-
ing question for a category in another branch;

- When preferring yes/no answers over radio buttons,
then when there are more than 2 subclasses to choose
from, introduce a temporary node in the decision dia-
gram.

7. CONCLUSIONS
A novel general method for the reuse of ontological knowl-

edge for ontology authoring, GENERATOR, was introduced,
and we have provided a concrete instantiation of it for the
reuse of knowledge from the DOLCE foundational ontology
and a general taxonomy of part-whole relations. This instan-
tiation, called FORZA, can be used to build ontologies in any
specific domain. FORZA includes novel, automated support
for (i) the linking of a domain ontology with DOLCE (the D3
tool), and (ii) an automated reasoner-based computation of
part-whole relation(s) (the OntoPartS-2 tool). The indepen-
dently usable D3 and OntoPartS-2 have been integrated in
the MoKi ontology authoring tool, therewith demonstrating
a working proof-of-concept of FORZA.

To the best of our knowledge, there are no works in the lit-
erature that explicitly aim at defining comprehensive
methodological and tool-based support for ontology devel-
opers in deciding how (where) to reuse any of the knowl-
edge already present in (foundational) ontologies (the few
works with the same aim [5, 12, 8] have been described).
By providing such methodological and tool-based support,
this paper provides a first significant contribution towards
effectively supporting ontology authoring driven by ontology
reuse.

8. REFERENCES
[1] C. Di Francescomarino, C. Ghidini, and M. Rospocher.

Evaluating wiki-enhanced ontology authoring. In Proc.
of EKAW’12, volume 7603 of LNAI, pages 292–301.
Springer, 2012. Oct 8-12, Galway, Ireland.

[2] V. Dimitrova, R. Denaux, G. Hart, C. Dolbear,
I. Holt, and A. G. Cohn. Involving domain experts in
authoring OWL ontologies. In Proc. of ISWC’08,
volume 5318 of LNCS, pages 1–16. Berlin, 2008.

[3] M. Fernandez, A. Gomez-Perez, A. Pazos, and
J. Pazos. Building a chemical ontology using
METHONTOLOGY and the ontology design
environment. IEEE Expert: Special Issue on Uses of
Ontologies, January/February:37–46, 1999.

[4] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari,
R. Oltramari, and L. Schneider. Sweetening ontologies
with DOLCE. In Proc. of EKAW’02, pages 166–181.
Springer, 2002.

[5] G. Kassel. Integration of the DOLCE top-level
ontology into the OntoSpec methodology. Technical
report, LaRIA, October 2005.

[6] C. M. Keet. The use of foundational ontologies in
ontology development: an empirical assessment. In
G. Antoniou et al., editors, Proc. of ESWC’11, volume
6643 of LNCS, pages 321–335. Springer, 2011.

[7] C. M. Keet and A. Artale. Representing and reasoning
over a taxonomy of part-whole relations. Applied
Ontology, 3(1-2):91–110, 2008.

[8] C. M. Keet, F. C. Fernández-Reyes, and
A. Morales-González. Representing mereotopological
relations in OWL ontologies with ontoparts. In
E. Simperl et al., editors, Proc. of ESWC’12, volume
7295 of LNCS, pages 240–254. Springer, 2012.

[9] Z. Khan and C. M. Keet. ONSET: Automated
foundational ontology selection and explanation. In
EKAW, volume 7603 of LNAI, pages 237–251.
Springer, 2012.

[10] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and
A. Oltramari. WonderWeb deliverable D18 ontology
library (final). Technical report, LOA-CNR, 2003.

[11] Wikimedia Foundation. Mediawiki.
http://www.mediawiki.org, Accessed on 6 Nov 2011.

[12] A. Oltramari. A tutoring methodology for the
enrichment of ontologies. In Cahiers de Lexicologie,
Classique Garnier, pages 221–229, 2011.

[13] I. Opalicki and S. Lovrencic. How well are domain and
upper ontologies connected? In CECIIS, pages 17–22,
2012. September 19-21, 2012, Varazdin, Croatia.

[14] V. Presutti, A. Gangemi, S. David, G. A. de Cea,
M. C. Surez-Figueroa, E. Montiel-Ponsoda, and
M. Poveda. A library of ontology design patterns:
reusable solutions for collaborative design of
networked ontologies. NeOn deliverable D2.5.1, NeOn
Project, Institute of Cognitive Sciences and
Technologies (CNR), 2008.

[15] S. K. Semy, M. K. Pulvermacher, L. J. Obrst, and
M. K. Pulvermacher. Toward the use of an upper
ontology for u.s. government and u.s. military
domains: An evaluation. Technical report, IIWeb-04,
in conjunction with VLDB-2004, 2004.

[16] E. Simperl, M. Mochol, and T. Bürger. Achieving
maturity: the state of practice in ontology engineering
in 2009. International Journal of Computer Science
and Applications, 7(1):45–65, 2010.

[17] M. C. Suarez-Figueroa, G. A. de Cea, C. Buil,
K. Dellschaft, M. Fernandez-Lopez, A. Garcia,
A. Gomez-Perez, G. Herrero, E. Montiel-Ponsoda,
M. Sabou, B. Villazon-Terrazas, and Z. Yufei. NeOn
methodology for building contextualized ontology
networks. NeOn Deliverable D5.4.1, NeOn Project,
2008.

[18] T. Tudorache, others Üstün, M.-A. D. Storey, and
M. A. Musen. Ontology development for the masses:
Creating ICD-11 in WebProtégé. In Proc. of
EKAW’10, volume 6317 of LNCS, pages 74–89.
Springer, 2010. Lisbon, Portugal.

