Encoding biases' influences on development and use of ontologies in the life sciences

C. Maria Keet

Department of Computer Science, University of Cape Town, South Africa mkeet@cs.uct.ac.za

Bio-ontologies COSI Keynote Intelligent Systems for Molecular Biology Conference 2022 Madison, Wisconsin, USA, 10-14 July 2022

- $\Rightarrow\,$ Different ways of representing the same meaningful unit
 - level of detail desired or needed
 - purpose of the ontology
 - (and whether it is an ontology or actually another artefact)
- ⇒ Conflicting requirements can't be all met in the same (one type of) ontology

image source: https://www.flickr.com/photos/mentealterne/1224542289/

Outline

Context and motivation

- 2 Encoding biases
 - Ontology patterns
 - Examples of effects for ontology development
 - From patterns to styles
- 8 Effects in applications

Outline

Context and motivation

Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

4 Conclusions

Introduction

Ontologies

- For their own sake
- For communication among humans
- Used for many different ontology-driven information systems (database integration and linking, recommender systems, NLP, textbook annotation and search, question generation, Q&A systems, etc.)

Introduction

Ontologies

- For their own sake
- For communication among humans
- Used for many different ontology-driven information systems (database integration and linking, recommender systems, NLP, textbook annotation and search, question generation, Q&A systems, etc.)
- $\Rightarrow\,$ Different reasons may affect how the knowledge is represented in the ontology
- ⇒ Historically called **encoding bias** [Uschold and Gruninger(1996)]

Historically, it's also separate from confounding factors

Thus not about

"Is it a concept? Is a universal?" "Is it subsumption? Is it parthood?"

image source: https://muppet.fandom.com/wiki/Super_Grover

Historically, it's also separate from confounding factors

- Thus not about
 - "Is it a concept? Is a universal?"
 - "Is it subsumption? Is it parthood?"

- The knowledge/meaningful unit/piece of reality is assumed known and agreed upon
- And no interference of cognitive bias [Keet(2021)]
- Differently 'encoded' (i.e., formalised) due to purposes, language features,
- Noted then, but little done with it; more more recently

image source: https://muppet.fandom.com/wiki/Super_Grover

Ontology Summit 2013's lifecycle model; OE book; NeON.

Ontology development at the 'micro-level' level

• We need to get axioms into the ontology; also called *ontology authoring*

Ontology development at the 'micro-level' level

- We need to get axioms into the ontology; also called *ontology authoring*
- Uses micro-level guidelines, methods, and tools
 - $\bullet\,$ Methods, such as OntoClean and $\rm ONTOPARTS$ to improve an ontology's quality
 - Tools to model, to reason, to debug, to integrate, to link to data
- Encoding biases creep in here

Examples

• (a) a class Transformation or (b) a relationship transformsInto?

https://pxhere.com/en/photo/823275

https://en.wikipedia.org/wiki/File:Enzyme_Polyneuridine_Aldehyde_Esterase.png https://commons.wikimedia.org/wiki/File:Fancy_mice.jpg

Examples

(a) a class Transformation or (b) a relationship transformsInto?
(a) Enzyme is a Protein or (b) Enzyme has bearer Protein?

https://pxhere.com/en/photo/823275

https://en.wikipedia.org/wiki/File:Enzyme_Polyneuridine_Aldehyde_Esterase.png https://commons.wikimedia.org/wiki/File:Fancy_mice.jpg

Examples

- (a) a class Transformation or (b) a relationship transformsInto?
- (a) Enzyme is a Protein or (b) Enzyme has bearer Protein?
- (a) Mouse hasColour Colour or (b) Mouse hasQuality Colour that hasQuale Physical Region?

https://pxhere.com/en/photo/823275

https://en.wikipedia.org/wiki/File:Enzyme_Polyneuridine_Aldehyde_Esterase.png https://commons.wikimedia.org/wiki/File:Fancy_mice.jpg

Comparing examples

Three different patterns with a purpose bias

- Top: biased toward a science focus
- Middle: conceptual data modelling influence or purpose (e.g., models for FAIR data sets)
- Bottom: a thesaurus-like approach useful for document annotation

BT Ventilation

RT Patient

UF Mechanical Ventilation

10 / 70

-

Key questions

- Does it matter which way it is put in the ontology?
- If so: how/where/why, and is one always better than the other(s)?

Key questions

- Does it matter which way it is put in the ontology?
- If so: how/where/why, and is one always better than the other(s)?
- Which patterns are there for representing the 'same thing'?
- Are they really equivalent alternatives of the same meaningful unit?
- Do certain patterns co-occur, to make up a style of representing something?

Key questions

- Does it matter which way it is put in the ontology?
- If so: how/where/why, and is one always better than the other(s)?
- Which patterns are there for representing the 'same thing'?
- Are they really equivalent alternatives of the same meaningful unit?
- Do certain patterns co-occur, to make up a style of representing something?
- How does all this affect use and reuse of ontologies? (w.r.t., e.g., ontology imports, FO use, data integration, literature annotation, ...)

Outline

2 Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

4 Conclusions

Outline

2 Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

4 Conclusions

Which patterns where?

- Identify common modelling patterns (mainly from [Fillottrani and Keet(2017), Scharffe and Fensel(2008), Keet(2021)])
- Devise formalisation of ontology pattern (OP) and of OP alignment
- Formalise those common patterns and alignments
- Algorithm design for *automated finding* of the patterns and *checking correctness* of a possible pattern-based alignment or substitution

Fillottrani, P.R., Keet, C.M. Patterns for Heterogeneous TBox Mappings to Bridge Different Modelling Decisions. Proc. of ESWC'17. Springer LNCS 10249, 371-386.

To reify or not to reify?

Considerations:

- Are the more precise cardinality constraints needed?
- The foundational ontology to align it to

Attributions as attributes or as classes?

- Pros and cons of data properties
- What kind of thing is the one hidden in the data property?
- The foundational ontology to align it to

Ontology patterns

Roles or subclasses?

- Foundational ontology approach uses the bearer ('inheres in'); conceptual data models the subclassing
- Property inherence wrt subclasses (e.g., Protein has as property molecular weight and secondary structure, and enzyme too)
- The foundational ontology to align it to

Values, one-off with individuals, or subclasses?

- Data property versus 'something else' (+ pros and cons of data properties, again)
- Individuals in an ontology? One-off/nominals?
- Extensibility and stability of the representation
- Computational costs

Pattern management, first step: formalise them

- Language of pattern instantiation (OWL, some DL, ...)
- Language for patterns with vocabulary V, meta-level (second-order) elements (or stereotypes)
- Ontology pattern, with name, elements from \mathcal{V} , pattern axiom components, pattern's full formalisations; e.g.:
 - pattern name: basic all-some
 - pattern elements: C_1 , C_2 , \mathcal{R}_1
 - pattern axiom components: \sqsubseteq , \exists
 - pattern's full formalisation $\mathcal{C}_1 \sqsubseteq \exists \mathcal{R}.\mathcal{C}_2$

Example instantiation: $Butterfly \sqsubseteq \exists derivedFrom.Chrysalis$

Fillottrani, P.R., Keet, C.M. Patterns for Heterogeneous TBox Mappings to Bridge Different Modelling Decisions. Proc. of ESWC'17. Springer LNCS 10249, 371-386.

Class vs. Object Property (case A)

- alignment pattern name: class-OP
- pattern elements: C_1, C_2, \mathcal{R}_1 from $O, C'_3, C'_4, C'_5, \mathcal{R}'_2, \mathcal{R}'_3$ from O'
- alignment patterns' contexts:
 - pattern P in O (the one on the left): $\exists \mathcal{R}_1.\mathcal{C}_2 \sqsubseteq \mathcal{C}_1$ and $\exists \mathcal{R}_1^-.\mathcal{C}_1 \sqsubseteq \mathcal{C}_2$;
 - pattern P' in O' (the one on the right): $\exists \mathcal{R}'_2.\mathcal{C}'_4 \sqsubseteq \mathcal{C}'_3, \exists \mathcal{R}'_2^-.\mathcal{C}'_3 \sqsubseteq \mathcal{C}'_4, \exists \mathcal{R}'_3.\mathcal{C}'_5 \sqsubseteq \mathcal{C}'_3, \exists \mathcal{R}'_3^-.\mathcal{C}'_3 \sqsubseteq \mathcal{C}'_5, \mathcal{C}'_3 \sqsubseteq (\exists \mathcal{R}'_2), \text{ and } \mathcal{C}'_3 \sqsubseteq (\exists \mathcal{R}'_3).$

Outline

2 Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

4 Conclusions

Complications

- Different representation decisions in different ontologies impedes:
 - ontology interoperability and alignment
 - ontology reuse
 - ontology development: in automation and, e.g., CQ translations
 - deployment in ontology-driven information systems

Ontology development bottom-up vs few core relations from FOs

- NLP-based approaches:
 - Based on SVO phrases in English
 proliferation of candidate OPs
 - Mistaken belief of 'verb will become name of object property'

Ontology development bottom-up vs few core relations from FOs

- NLP-based approaches:
 - Based on SVO phrases in English
 proliferation of candidate OPs
 - Mistaken belief of 'verb will become name of object property'
- From conceptual data model of a database (or its schema) to an ontology
 - Favours flat structure, many properties
 - Little automated reasoning for 'debugging'

CQs example

Wisniewski, D., Potoniec, J., Lawrynowicz, A., Keet, C.M. Analysis of Ontology Competency Questions and their Formalisations in SPARQL-OWL. Journal of Web Semantics, 2019, 59:100534.

CQs example

- Can be, and has been, modelled differently
- Practically: m:n relation between CQ sentence pattern and SPARQL-OWL query & fomalisation
- ⇒ Need for decoupling of question from axiom pattern [Wisniewski et al.(2019)]
 - Rather: 'entity chunks' and 'predicate chunks' in a sentence; decide later on whether EC becomes a C, CE or a OPE
 - More management of CQs with axioms and queries

Wisniewski, D., Potoniec, J., Lawrynowicz, A., Keet, C.M. Analysis of Ontology Competency Questions and their Formalisations in SPARQL-OWL. Journal of Web Semantics, 2019, 59:100534.

CQs example (abridged notation)

What data are measured for gait assessment? // simple all-some in Dem@care What software can perform [task x]? // is_executed_in [subclass of] IAO_0000064 in SWO What information is clinically relevant for dedicated physical activities (i.e. exercises)? // all-some + subclass of ExerciseSummary Dem@care What software can read a .cel file? // with has_specified_data_input and has_format_specification in SWO

"What EC1 PC1 EC2": [
 "SELECT * WHERE { ?placeholder_PPx1 <subClassOf> :b1 ; <subClassOf> :b0 . :b0
 <onProperty> :b2 ; <someValuesFrom> ?placeholder_PPx2 . ?placeholder_PPx2
 <subClassOf> :b3 }",
 "SELECT * WHERE { ?placeholder_PPx1 <subClassOf> :b0 . :b0 <onProperty> :b1 ;
 <someValuesFrom> :b2 . ?placeholder_PPx1 <subClassOf> :b3 }"

"SELECT * WHERE { ?x0 <subClassOf> :b5 ; <subClassOf> :b0 . :b0 <onProperty> :b6 ; <someValuesFrom> :b1 . :b1 <intersectionOf> :b2 . :b2 <first> :b7 ; <rest> :b3 . :b3 <first> :b4 . :b4 <onProperty> :b8 ; <someValuesFrom> :b9 . :b3 <rest> <nil> }",],

Potoniec, J., Wisniewski, D., Lawrynowicz, A., Keet, C.M. Dataset of Ontology Competency Questions to SPARQL-OWL Queries Translations. Data in Brief, 2020, 29: 105098. https://github.com/CQ2SPARQLDWL/Dataset

CQs example axiom patterns

- CQ What EC1 PC1 EC2? with several formalisation options used:
 - $C_1 \sqsubseteq \exists R.C_2$
 - $C_1 \sqsubseteq \exists R. C_2 \text{ and } C_2 \sqsubseteq C_3$
 - $C_1 \sqsubseteq \exists R.C_2 \text{ and } C_2 \sqsubseteq \exists S.C_3$

Keet, C.M., Mahlaza, Z., Antia, M.-J. CLaRO: a Controlled Language for Authoring Competency Questions. MTSR'19. Springer CCIS vol. 1057, 3-15.

Antia, M.-J., Keet, C.M. Assessing and Enhancing Bottom-up CNL Design for Competency Questions for Ontologies. CNL'21. ACL, 1.11.

CQs example axiom patterns

- CQ What EC1 PC1 EC2? with several formalisation options used:
 - $C_1 \sqsubseteq \exists R.C_2$
 - $C_1 \sqsubseteq \exists R.C_2 \text{ and } C_2 \sqsubseteq C_3$
 - $C_1 \sqsubseteq \exists R.C_2 \text{ and } C_2 \sqsubseteq \exists S.C_3$
- CQ template language to assist: CLaRO [Keet et al.(2019)] https://github.com/mkeet/CLaRO

•	petQCs
Options	
What are the	
What are the difference	s between [noun phrase] of [noon phrase]?
What are the main type:	s of [noun phrase]?
What are the main cate;	gories of [noun phrase]?
What are the main type	s of [noun phrase] [noun phrase] [verb phrase]?
What are the types of [r	noun phrase]?

Keet, C.M., Mahlaza, Z., Antia, M.-J. CLaRO: a Controlled Language for Authoring Competency Questions. MTSR'19. Springer CCIS vol. 1057, 3-15.

Antia, M.-J., Keet, C.M. Assessing and Enhancing Bottom-up CNL Design for Competency Questions for Ontologies. CNL'21. ACL, 1.11.
What to do with them?

- Swap one for the other (ontology reuse, ontology-driven CDM, etc.)
- Heterogeneous alignments in case of ontology reuse
- Don't add both to your ontology
- Whichever you choose, use it consistently throughout the ontology

Outline

2 Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

4 Conclusions

Questions

- If those decisions are made systematically, a 'style' emerges
- Once we know the styles, converters can be developed

Fillottrani, P.R., Keet, C.M.. Dimensions Affecting Representation Styles in Ontologies. KGSWC'19. Springer CCIS vol. 1029, 186-200.

Questions

- If those decisions are made systematically, a 'style' emerges
- Once we know the styles, converters can be developed
- \Rightarrow What are the styles?
- \rightarrow What are the dimensions contributing to a style?
- \rightarrow What are the parameters' values/variations to choose from?

Fillottrani, P.R., Keet, C.M.. Dimensions Affecting Representation Styles in Ontologies. KGSWC'19. Springer CCIS vol. 1029, 186-200.

Indicative definition

Definition (Representation style, refined version)

A *representation style* is set of features used for representing a particular piece of conceptualisation or (understanding of) reality, for which there may be different (meaningfully equivalent, but not necessarily logically equivalent) ways to represent it in a logic that supports the style. The representation style is a justification-based positive design decision in at least one scenario.

Structure of the inventarisation

- Two 'levels': 1) predominantly theoretical (on the type of artefact one aims to create irrespective of the practical considerations), 2) engineering decisions (2a) tooling, 2b) language).
- For each dimension:
 - label/name/key phrase
 - description
 - examples
 - $\bullet~\geq 2$ 'traits' with name + description
- Result: 10 dimensions with 28 traits

Theoretical (1/2)

- Degree of adherence to ontological principles in representing the knowledge. extremes: the "foundational ontology way" and "applied way" (arguably, a logic-based conceptual data model).
 - Theoretical: predominantly or entirely with ontological principles, such as qualities, reification of processes, inherence of roles, no data properties.
 Applied: predominantly or entirely with decisions for applications, such as attributes/data properties and processes as relations.
 Mixed: the ontology contains both such decisions.

Theoretical (2/2)

Granularity of relations. limit oneself to a few core relations, such as parthood, participation, causality, and membership vs. declaring relations for every subtle distinction, such as a structural parthood as subtype of part-of and a celebrates that refines participates in.
 Parsimony: when there are no refinements of the basic relations.
 Abundance: when there are refinements on the basic relations or when there are domain-specific relations, or both.

Engineering (1/3)

- Modular vs monolithic; with or without module management Monolithic: there is one file, with no imports or mergers. Modul., ext.: at least one ontology is imported or merged such that the import has maintained its IRI; hence, it is associated with the process of ontology reuse.
 - Modul., int.: at least one ontology is imported, such that it is associated with the process of decomposition of a domain.

Engineering (2/3)

• General Concept Inclusions (GCls) vs only named entities on the left-hand side of the inclusion;

Explicit GCIs: they have been declared by the modeller, such as Property □ ∃propertyOf.Presential □ Presential in gfo-basic. Hidden GCIs: they have not been declared by the modeller explicitly, but they are there indirectly through other axioms: there is a pair A ≡ C and A □ D and C and D are complex class expressions¹. No GCIs: they have not been declared explicitly or implicitly.

Engineering (3/3)

• Values/instances/classes interplay. Representation of certain entities that may be deemed different kind of elements, depending on one's modelling viewpoint, practicalities, and which constructors are available in the language

Nominals: as described in option 1; i.e., Week \equiv {Sunday, ...,

Saturday} where Sunday etc. are individuals.

- Enumerated: as described in option 2; i.e., the values of a data property onWeekday can be one of the values Sunday,, Saturday.
- Class-inst.: as described in option 3; i.e., they are all classes appropriately related, and a 'Sunday 6 January 2019' is an instance of Sunday etc.
- Mixed: any two or three appear in the ontology.
 - -: not applicable.

Question & Procedure

- \Rightarrow Are they useful features to check an ontology for?
- 1. Select different types of ontologies: foundational, core, domain, and tutorial.
- 2. Classify them manually; carried out by two people independently.
- 3. Check for inter-annotator agreement and whether the dimensions suffice; if there is disagreement, either:
 - 3a. Harmonise and move to Step 4, below;
 - **3b**. Resolve conflict in classification, refine either the affected dimension's value or description thereof, and return to Step 2.
- 4. Analyse the data on expected consequences and on whether any recurring combinations of dimensions emerged.

Theory-oriented ontologies

Applied ontologies

Observations

- SUMO with characteristics of an applied ontology
- No reuse of relations typically with 'Hierarchy, bare' or 'flat';
- (more) data properties in Applied ontologies cf Theoretical
- Applied ontologies with more use of nominals, instances, and data properties
- Several ontologies declare domain and range axioms for OPs, but these declarations are mostly not reflected in other CEs
- Number of theoretical ontologies with none or only hidden GCIs is higher than expected, suggesting a low level of usage for advanced ontology expressions
- Explicit or hidden GCI are mostly absent from applied ontologies (except MEO)

Outline

Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

4 Conclusions

So far (in this talk)

- Example on ventilators
 - different purposes
- CQ:axiom or CQ:query is n:m rather than 1:1
 - Complicates validation efforts in ontology authoring
 - Makes finding ontologies for use and reuse harder
- Ontology reuse across ontologies (alignment, integration, heterogeneous mappings)
- Encoding bias for purpose: *choose* a style to fit the purpose

• Idea: annotate textbook with ontology, generate questions automatically, mark automatically

 Idea: annotate textbook with ontology, generate questions automatically, mark automatically
 Figure: Annotated p132 of Biology (9th edition) by Campbell and Reece [Chaudhri et al.(2013)]:

Molecules have a type of energy called FIGURE 7.15 The diffusion of asslutus across a synthetic thermal energy (heat), due to their conmanner stant motion. One result of this motion is diffusion, the movement of mole-What diffuses trystrated sons from Inspertantic polytimes? cules of any substance so that they What are the differences between a spread out evenly into the available active transport estil a diffusion? space. Each molecule moves randomly, What do transport proteins diffusa to hypotonic solutions/7 yet diffusion of a population of mole-What do transport proteins diffuse cules may be directional. To underatong/apross cell poles? stand this process, let's imagine a syn-100 100 thetic membrane separating pure water from a solution of a dye in water. Study Figure 7.13a carefully to appreci-Substance will diffuse from where It's more concentrated to where it's ate how diffusion would result in both solutions having equal concentraless concentrated tions of the dye molecules. Once that point is reached, there will be a dynamic equilibrium, with as many dye molecules crossing the memthe other. concentration gradient diffusion: In the absence of other A region along which the density of a chemical substance increases or where it is more concentrated to way, any substance will diffuse down its concentration gradient, the region along which the density of a chemical substance increases or decreases (in this case, decreases). No ・ロト ・ 同ト ・ ヨト ・ ヨト

43 / 70

Q: What is the relation between a carbohydrate and a biomembrane?

(example from and based on [Chaudhri et al.(2013)])

Q: What is the relation between a carbohydrate and a biomembrane?

(example from and based on [Chaudhri et al.(2013)])

Q: What is the relation between a carbohydrate and a biomembrane?

(example from and based on [Chaudhri et al.(2013)])

Try to do that for any ontology

Question templates for different types of educational questions
 Is a <T_NOUN> <OP_IS_PARTICIPLE_BY> <Quantifier_some> <T_NOUN>?
 What does a <T_NOUN> <OP_VERB>?

Try to do that for any ontology

- Question templates for different types of educational questions Is a <T_NOUN> <OP_IS_PARTICIPLE_BY> <Quantifier_some> <T_NOUN>? What does a <T_NOUN> <OP_VERB>?
- Notion of "axiom prerequisites"
- Assumes a certain way of representing something and of verbalising something; the easiest:
 - The 'applied' option, (questions about endurants, dispositions etc are out of scope for a subject domain)
 - The 'abundance' of relations
 - Modularity invariant (provided same naming scheme)
 - Values/instances/classes interplay: variant-dependent code adds complexity to the algorithms

Raboanary, T., Wang, S., Keet, C.M. Generating Answerable Questions from Ontologies for Educational Exercises. MTSR'21. Springer CCIS vol. 1537, 28-40. https://github.com/Mexet/AQuestG0 $\leftarrow \Box
ightarrow \leftarrow \Box
ightarrow$

 $produces \equiv produced_by^-$

Q: Is Monoclonal antibody reagent produced by some Hybridoma cell line? A: Yes

Q: What does a Hybridoma cell line produce?

A: Monoclonal antibody reagent

 $produces \equiv produced_by^-$

Q: Is Monoclonal antibody reagent produced by some Hybridoma cell line? A: Yes

Q: What does a Hybridoma cell line produce?

A: Monoclonal antibody reagent

 $\tt MonoclonalAntibodyReagent \sqsubseteq \exists \tt participates_in.Production$

 $\texttt{HybridomaCellLine} \sqsubseteq \forall \texttt{participates_in.Production}$

.... something with the [input] and [output] roles

Algorithm TBD, for every ontology pattern

-

 $produces \equiv produced_by^-$

Q: Is Monoclonal antibody reagent produced by some Hybridoma cell line? A: Yes

Q: What does a Hybridoma cell line produce?

A: Monoclonal antibody reagent

 $MonoclonalAntibodyReagent \sqsubseteq \exists participates in.Production$

 $\texttt{HybridomaCellLine} \sqsubseteq \forall \texttt{participates_in.Production}$

Q: What does a Hybridoma cell line participate in? A: Production

 $produces \equiv produced_by^-$

Q: Is Monoclonal antibody reagent produced by some Hybridoma cell line? A: Yes

Q: What does a Hybridoma cell line produce?

A: Monoclonal antibody reagent

 $\tt MonoclonalAntibodyReagent \sqsubseteq \exists \tt participates_in.Production$

 $\texttt{HybridomaCellLine} \sqsubseteq \forall \texttt{participates_in.Production}$

Q: What does a Hybridoma cell line participate in?

 $produces \equiv produced_by^-$

Q: Is Monoclonal antibody reagent produced by some Hybridoma cell line? A: Yes

Q: What does a Hybridoma cell line produce?

A: Monoclonal antibody reagent

 $\tt MonoclonalAntibodyReagent \sqsubseteq \exists \tt participates_in.Production$

 $\texttt{HybridomaCellLine} \sqsubseteq \forall \texttt{participates_in.Production}$

...Q: What does a Hybridoma cell line participate in? A: Production of monoclonal antibody reagents

Correct but awkward or confusing sentences

(BioTop) Does a material object project onto an immaterial three dimensional physical entity?

(BioTop) A taxon quality projects onto a taxon value region. True or false?

note: taxon value region is an "abstract region in which the values of biological taxa are located (cf. Schulz et.al ISMB 2008)."

(SO) Which physical endurant has a state that is only a stuff state?

Correct but awkward or confusing sentences

(BioTop) Does a material object project onto an immaterial three dimensional physical entity?

(BioTop) A taxon quality projects onto a taxon value region. True or false?

note: taxon value region is an "abstract region in which the values of biological taxa are located (cf. Schulz et.al ISMB 2008)."

- (SO) Which physical endurant has a state that is only a stuff state?
- (SO) Does a mixed stuff have a part stuff that is a stuff?

 $MixedStuff \equiv Stuff \sqcap \exists hasPartStuff.Stuff$

material object $\sqsubseteq \exists$ has life.life

Better results with certain domain ontologies

- An applied style
- With abundance in granularity of relations
- Not just/mainly a 'bare' hierarchy, not just domain & range axioms

Better results with certain domain ontologies

- An applied style
- With abundance in granularity of relations
- Not just/mainly a 'bare' hierarchy, not just domain & range axioms
- 'hasX' and other OP naming considerations
- Naming in ontology often within-context, but out-of-context in the self-standing questions

Cell types in CL [Osumi-Sutherland et al.(2021)]

Cell types in CL [Osumi-Sutherland et al.(2021)]

Cell types in CL [Osumi-Sutherland et al.(2021)]

Cell types in CL [Osumi-Sutherland et al.(2021)]

Cell type – alternative encodings

- **1** Kupffer cell $\sqsubseteq \exists clears$.erythrocyte
- ② acid secreting cell ⊑ ∃secretes.acid
- I Be1 cell ⊑ ∃produces.interferon-gamma
- ④ type I NK T cell ⊑ ∃binds.glycosphingolipid
- $\mathbf{0}$ vomeronasal organ $\sqsubseteq \exists \mathsf{detects}.\mathsf{pheromone}$
- 6

Effect on queries

- Cell Annotation Platform (Celltype.info) only allows search by celltype to find data sets: no effects
- Others that use CL also have mostly only simple term search

Effect on queries

- Cell Annotation Platform (Celltype.info) only allows search by celltype to find data sets: no effects
- Others that use CL also have mostly only simple term search
- But, if you were to want to search for, e.g.:
 - the function/role of a cell; or
 - all cells that perform a certain role
 - all datasets that are from experiments on erythrocyte clearance by macrophages
 - projects on capabilities of some cell type
- the 'capable of' version will be much easier cf over very many possible names for relations: fewer names to remember, more structured, consistency in approach

Ontology-based querying - Preliminaries

<ロト<</th>
 ・< 言ト< 言ト</th>
 うへで 52/70

Ontology-based querying - Preliminaries

Ontology-based querying with some form of OBDA/I

Fillottrani, P.R., Keet, C.M. KnowlD: An architecture for efficient Knowledge-driven Information and Data access. Data Intelligence, 2020, 2(4): 487-512.

Connecting the knowledge to the data: OBDA or KnowlD

Connecting the knowledge to the data: OBDA or KnowlD

Connecting the knowledge to the data: OBDA or KnowlD

Queries with OBDA models vs FO-inspired ontologies

Ontology (or controlled vocab, kg) provides the common vocabulary and constraints that hold across the applications

Calvanese D, Keet CM, Nutt W, Rodriguez-Muro M, Stefanoni G. Web-based Graphical Querying of Databases through an Ontology: the WONDER System. ACM SAC 2010.

Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G. Enhancing web portals with Ontology-Based Data Access: the case study of South Africa's Accessibility Portal for people with disabilities. OWLED'08.

Queries with OBDA models vs FO-inspired ontologies

Ontology (or controlled vocab, kg) provides the common vocabulary and constraints that hold across the applications

イロト イボト イヨト イヨト

End-user query "give me all <u>red flowers</u>" just click relevant elements in the diagram

Calvanese D, Keet CM, Nutt W, Rodriguez-Muro M, Stefanoni G. Web-based Graphical Querying of Databases through an Ontology: the WONDER System. ACM SAC 2010. Keet, C.M., Alberts, R., Gerber, A., Chimamiwa, G. Enhancing web portals with Ontology-Based Data Access: the case study of South Africa's Accessibility Portal for people with disabilities. OWLED'08.

Queries with OBDA models vs FO-inspired ontologies

Calvanese D, Keet CM, Nutt W, Rodriguez-Muro M, Stefanoni G. Web-based Graphical Querying of Databases through an Ontology: the WONDER System. ACM SAC 2010.

Keet, Č.M., Alberts, R., Gerber, A., Chimamiwa, G. Enhancing web portals with Ontology-Based Data Access: the case study of South Africa's Accessibility Portal for people with disabilities. OWLED'08. 55 / 70

Better results with certain domain ontologies

- Applied style de facto technically a conceptual data model
- Mainly domain & range axioms for OBDA (language limitations for performance)
- Ontology vocabulary naming schemes don't matter

Outline

Context and motivation

Encoding biases

- Ontology patterns
- Examples of effects for ontology development
- From patterns to styles

3 Effects in applications

Summary

- Encoding biases do exist; at least 6 groups of ontology patterns
- Combine into styles, find, and swap, based on 10 dimensions with 28 traits
- Affects ontology development: bottom-up development algorithms, alignment, CQ management, etc.
- Affects ontology use, e.g.:
 - Ontology-driven EdTech
 - Ontology-based data access
- Will not resolve itself, but needs better management

Key questions revisited

- Does it matter which way it is put in the ontology?
- If so: how/where/why, and is one always better than the other(s)?
- Which patterns are there for representing the 'same thing'?
- Are they really equivalent alternatives of the same meaningful unit?
- Do certain patterns co-occur, to make up a style of representing something?
- How does all this affect use and reuse of ontologies? (w.r.t., e.g., ontology imports, FO use, data integration, literature annotation, ...).

Key questions revisited

• Does it matter which way it is put in the ontology?

 \rightarrow yes

• If so: how/where/why, and is one always better than the other(s)?

 \rightarrow no

- Which patterns are there for representing the 'same thing'?
- \rightarrow at least those 19
 - Are they really equivalent alternatives of the same meaningful unit?

 \rightarrow no

• Do certain patterns co-occur, to make up a style of representing something?

 \rightarrow yes

• How does all this affect use and reuse of ontologies? (w.r.t., e.g., ontology imports, FO use, data integration, literature annotation, ...).

 \rightarrow in multiple ways

Other considerations

- Encoding bias affects usability and reusability
- If 'applied' style, with application decisions, defeats the original purpose of ontologies
- If 'theoretical' style, harder to use in applications
- Mindful of purpose(s) of ontologies vs other artefacts (thesauri, conceptual data models, ...)

Other considerations

- Encoding bias affects usability and reusability
- If 'applied' style, with application decisions, defeats the original purpose of ontologies
- If 'theoretical' style, harder to use in applications
- Mindful of purpose(s) of ontologies vs other artefacts (thesauri, conceptual data models, ...)
- Adjust modelling language for modeller's own good?
- Systematise 'categories' of ontologies and make developer categorise theirs?
- Better educational material?
- Patch it up with guidelines, methods, and tools to mitigate the worst?

Collaborators (on the works included in this talk), funding

- Collaborators: Diego Calvanese and Werner Nutt (FUB, Italy), Pablo Fillottrani (UNS, Argentina), Agnieszka Ławrynowicz (PUT, Poland), Jedrec Potoniec (PUT, Poland), David Toman (UW, Canada), Dawid Wisniewski (PUT, Poland)
- Current and former students: Mary-Jane Antia, Leighton Dawson, Zola Mahlaza, Bradley Malgas, Toky Raboanary, Giorgio Stefanoni, Steve Wang
- Funding from EU, HPI, NRF

References I

V.K. Chaudhri, B. Cheng, A. Overholtzer, J. Roschelle, A. Spaulding, P. Clark, M. Greaves, and D Gunning.

Inquire biology: A textbook that answers questions. *AI Magazine*, 34(3):55–72, 2013.

Pablo R. Fillottrani and C. Maria Keet.

Patterns for heterogeneous tbox mappings to bridge different modelling decisions.

In E. Blomqvist et al., editors, Proceeding of the 14th Extended Semantic Web Conference (ESWC'17), volume 10249 of LNCS, pages 371–386. Springer, 2017. 30 May - 1 June 2017, Portoroz, Slovenia.

C. M. Keet, Z. Mahlaza, and M.-J. Antia.

CLaRO: a controlled language for authoring competency questions. In E. Garoufallou et al., editors, 13th Metadata and Semantics Research Conference (MTSR'19), volume 1057 of CCIS, pages 3–15. Springer, 2019. 28-31 Oct 2019, Rome, Italy.

C.M. Keet.

An exploration into cognitive bias in ontologies.

In E.M. Sanfilippo et al., editors, Proceedings of Cognition And OntologieS (CAOS'21), part of JOWO'21, volume 2969 of CEUR-WS, page 17p, 2021. 13-16 September 2021, Bolzano, Italy.

Asiyah Yu Lin, Yuki Yamagata, William D. Duncan, Leigh C. Carmody, Tatsuya Kushida, Hiroshi Masuya, John Beverley, Biswanath Dutta, Michael DeBellis, Zoë May Pendlington, Paola Roncaglia, and Yongqun He. A community effort for COVID-19 ontology harmonization.

In Janna Hastings and Adrien Barton, editors, *Proceedings of the International Conference on Biomedical Ontologies* 2021 (*ICBO'21*), volume 3073 of *CEUR Workshop Proceedings*, pages 122–127. CEUR-WS.org, 2021.

References II

D. Osumi-Sutherland, C. Xu, M. Keays, et al.

Cell type ontologies of the human cell atlas. *Nature Cell Biology*, 23:1129–1135, 2021.

Yuan Ren, Artemis Parvizi, Chris Mellish, Jeff Z. Pan, Kees van Deemter, and Robert Stevens. Towards competency question-driven ontology authoring. In *Extended Semantic Web Conference (ESWC'14)*, LNCS. Springer, 2014.

Francois Scharffe and Dieter Fensel.

Correspondence patterns for ontology alignment.

In A. Gangemi and J. Euzenat, editors, International Conference on Knowledge Engineering and Knowledge Management, volume 5268 of LNAI, pages 83–92. Springer, 2008.

M. Uschold and M. Gruninger.

Ontologies: principles, methods and applications. Knowledge Engineering Review, 11(2):93-136, 1996. URL https://doi.org/10.1017/S0269888900007797.

Dawid Wisniewski, Jedrzej Potoniec, Agnieszka Lawrynowicz, and C. Maria Keet.

Analysis of ontology competency questions and their formalisations in sparql-owl. *Journal of Web Semantics*, 59(100534):19p, 2019.

Thank you!

Questions?

My award-winning open textbook

https://people.cs.uct.ac.za/~mkeet/OEbook/

A memoir

Extra slides with more examples

Actual example for case F (1/2)

Requirement: harmonise the CIDO and CODO COVID-19 ontologies [Lin et al.(2021)]

- CODO: laboratory testfinding \equiv {positive, pending, negative}
- CIDO: positive COVID-19 diagnosis ⊑ COVID-19 diagnosis, presumptive positive COVID-19 diagnosis ⊑ COVID-19 diagnosis, and negative COVID-19 diagnosis ⊑ COVID-19 diagnosis

Actual example for case F (1/2)

Ontological issues

- a finding of some fact vs. a diagnosis (i.e., <u>conclusion drawn</u> from the fact)
- but when taken in context, intention is the same

Actual example for case F (1/2)

- Ontological issues
 - a finding of some fact vs. a diagnosis (i.e., <u>conclusion drawn</u> from the fact)
 - but when taken in context, intention is the same
- Solution options:
 - Change CODO to use CIDO's style
 - Ochange CIDO to use CODO's style
 - **③** Joint outside option with attribute + values instead

Class vs. Object Property (case A)

- alignment pattern name: class-OP
- pattern elements: C_1, C_2, \mathcal{R}_1 from $O, C'_3, C'_4, C'_5, \mathcal{R}'_2, \mathcal{R}'_3$ from O'
- alignment patterns' contexts:
 - pattern P in O (the one on the left): $\exists \mathcal{R}_1.\mathcal{C}_2 \sqsubseteq \mathcal{C}_1$ and $\exists \mathcal{R}_1^-.\mathcal{C}_1 \sqsubseteq \mathcal{C}_2$;
 - pattern P' in O' (the one on the right): $\exists \mathcal{R}'_2.\mathcal{C}'_4 \sqsubseteq \mathcal{C}'_3, \exists \mathcal{R}'_2^-.\mathcal{C}'_3 \sqsubseteq \mathcal{C}'_4, \exists \mathcal{R}'_3.\mathcal{C}'_5 \sqsubseteq \mathcal{C}'_3, \exists \mathcal{R}'_3^-.\mathcal{C}'_3 \sqsubseteq \mathcal{C}'_5, \mathcal{C}'_3 \sqsubseteq (\exists \mathcal{R}'_2), \text{ and } \mathcal{C}'_3 \sqsubseteq (\exists \mathcal{R}'_3).$
- pattern alignment:
 - homogeneous mappings: between C₁ and C'₄ and between C₂ and C'₅, which may be subsumption or equivalence relations.
 - heterogeneous alignments: $\exists \mathcal{R}_1 \sqsubseteq \mathcal{C}'_3$, $\exists \mathcal{R}_1^- \sqsubseteq \mathcal{C}'_3$, $\mathcal{C}'_3 \sqsubseteq \exists \mathcal{R}_1 \sqcap \exists \mathcal{R}_1^- \sqcap (\leq 1 \mathcal{R}_1) \sqcap (\leq 1 \mathcal{R}_1^-)$.

Example: ontology interoperability and alignment [Fillottrani and Keet(2017)]

Figure: First: Mapping and searching example ('Case A': Class↔OP); Second: checking and accept/reject alignment

Example: ontology interoperability and alignment [Fillottrani and Keet(2017)]

Figure: First: Mapping and searching example ('Case A': Class↔OP); Second: checking and accept/reject alignment

CQs example (abridged notation)

Is [this animal] a herbivore?
Is [this software] open source development?
is [it] scriptable?
is [it] extensible?

// a simple ASK for "X is a Y" in AWO // uses property has_licence in SWO // impossible with explicit knowledge in SWO // with has_licence, has_clause, 'derivative software allowed', and 'EPCC' in SWO

```
"Is EC1 EC2": [

"SELECT * WHERE { :b0 <subClassOf> :b1 . :b1 <onProperty> ?p ; <someValuesFrom> :b2 }"

"SELECT * WHERE { ?placeholder_PPx1 <subClassOf> :b2 ; <subClassOf> :b0 . :b0

<onProperty> :b3 ; <someValuesFrom> :b1 . :b1 <onProperty> :b4 ; <someValuesFrom> :b5 }",

"SELECT * WHERE { ?placeholder_PPx1 <subClassOf> :b0 ; <subClassOf> :b1 }",

"SELECT * WHERE { ?placeholder_PPx1 <subClassOf> :b0 ; <subClassOf> :b1 }",
```

"SELECT * WHERE { :b0 <subClassOf> :b1 . :b1 <onProperty> ?p ; <someValuesFrom> :b2 }": ["Is EC1 EC2", "PC1 I PC1 EC1 PC1 EC2", "What types of EC1 are EC2"

イロト 不得下 イヨト イヨト 二日

Potoniec, J., Wisniewski, D., Lawrynowicz, A., Keet, C.M. Dataset of Ontology Competency Questions to SPARQL-OWL Queries Translations. Data in Brief, 2020, 29: 105098. https://github.com/CQ2SPARQLOWL/Dataset