
CHAPTER 1

ONTOLOGY-DRIVEN FORMAL
CONCEPTUAL DATA MODELING FOR
BIOLOGICAL DATA ANALYSIS

Catharina Maria Keet

School of Computer Science, University of KwaZulu-Natal, South Africa

1.1 INTRODUCTION

Biological data modeling serves many purposes, and many approaches exist that

are used in this endeavor. The main topics of advanced conceptual data modeling

for database and Object-Oriented software development to support biological data

analysis are included in Figure 1.1, which extend the traditional ‘waterfall’ software

development methodology as depicted in bold in Figure 1.2. The scope of this

chapter is to provide an overview of the ontological and logical aspects of conceptual

data modeling tailored to molecular biology and biological knowledge discovery.

Many databases and software applications have been and are being developed

in bioinformatics, which, following good computing methodologies, are—or should

have been—developed in stages, going from requirements analysis (‘what should

the envisioned software do?’) and conceptual analysis (‘what data should it be

able to manage?’) to design-level code and then to the actual implementation.

It is well-known that omitting the conceptual analysis stage by going straight to

coding or scripting just adds to the pile of one-off (bioinformatics) tools that have

more bugs and are much less, or not at all, maintainable and interoperable. Con-

versely, availing of a proper software development methodology with a represen-

title, edition. By author
Copyright c© 2011 John Wiley & Sons, Inc.

1

2 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

Biological data modeling
(BDM)

BDM with Conceptual
Data Modeling (e.g.,

EER, UML, ORM)

BDM with
Ontologies

BDM with other
techniques (e.g.,

pi calculus) ...

BDM with graphs
(e.g., OBO, SKOS)

BDM with
logic (e.g.,
OWL, DL)

Focus on lightweight ontolo-
gies (e.g., for data annota-
tion, linked data, ontology-
assisted data mining, etc.)

Focus on
automated
reasoning

Traditional modeling
(with or without

extensions
motivated by bio)

Ontology-driven modeling
(informed by Ontology, logic-

based, use of ontology fragments)

Focus on expressiveness
(with extensions: fuzzy,
temporal, rough etc.)

Focus on
applicability in

information systems

Figure 1.1 Informal overview of the main subtopics in Biological Data Modeling with
ontologies and conceptual data modeling and several usage scenarios.

Figure 1.2 The waterfall methodology, augmented with ontological analysis considering
aspects from Ontology, Artificial Intelligence (knowledge representation), and ontologies,
depicted in boldface.

tation at the conceptual layer has been shown to result in mitigation, avoidance,

and/or solving such issues, and therewith contributed to a software infrastructure

that enabled more sophisticated biological data analysis and knowledge discovery

[15, 24, 48, 54, 58, 59, 63]. The output of the conceptual analysis stage for soft-

ware development is a conceptual data model, normally represented in a language

such as Extended Entity-Relationship (EER) for relational databases [18], the Uni-

fied Modeling Language (UML) for object-oriented software [52], or Object-Role

Modeling (ORM) for either one [30], which have been used also for software de-

velopment in bioinformatics; e.g., [11, 15, 21, 34, 54, 58]. These languages are not

equivalent, one language may be better for biological data modeling than another

INTRODUCTION 3

[34], and modelers tend to prefer one graphical language over another. So, assessing

the expressiveness of those languages and the associated quality of the conceptual

data models are of vital importance to ascertain their suitability for biological data

modeling. This has been investigated as a component of ontology-driven concep-

tual data modeling to create ontology-driven information systems [25], where an

ontology is positioned as an application independent formal representation of (our

understanding of) a piece of reality and a conceptual data model as an implemen-

tation independent representation that is tailored to the application scenario. For

instance, one can make more precise the representation of UML’s aggregation asso-

ciation or part-whole relation by availing of advances in Ontology (philosophy) and

making them applicable to conceptual data modeling [3, 29, 41]; one can then use

scientific arguments and explain why, e.g., a protein chain’s Residue’s Coordinates
are not part of the residue [11], but an attribute that describes its location, and

distinguish between spatial containment and structural parthood [41]. Moreover,

only if the data is stored and managed correctly can one achieve the most com-

prehensive and reliable discovery of biological knowledge. An ontology also can be

used to generate multiple conceptual data models [20, 32, 61], which improves their

quality and ensures interoperability between them. Both scenarios require a formal,

logic-based, foundation of a conceptual data modeling language to foster precision,

accuracy, adequate coverage of the subject domain semantics, and implementabil-

ity. A benefit of the logic foundations is that a conceptual data model then can be

subjected to automated reasoning services, such as consistency checking and deriv-

ing implicit constraints [1, 9, 16, 22, 38, 56], thereby improving its quality further

and, hence, preventing software bugs. In addition, automated reasoning can be

used as a tool for biological knowledge discovery [39, 63].

Thus, a necessary first step is to fix a formalization for the main conceptual

data modeling languages, thereby differentiating between human-computer inter-

action issues and the real language expressiveness, hence clearing up part of the

argument regarding suitability of a particular conceptual data modeling language

for biology. Moreover, this enables not only assessing but also extending the real

modeling features of the languages and laying the basis for applications of auto-

mated reasoning. The here proposed formalization into one formal common con-

ceptual data modeling language—called CMcom, based on the DLRifd Description

Logic language—captures most of ORM and all of UML Class Diagram and EER

language features. Conceptual data models are then improved upon with exten-

sions coming from Ontology and ontologies in the form of modeling guidelines to

improve the quality of conceptual data models, and extensions to the represen-

tation language, therewith solving certain outstanding modeling issues. This will

be illustrated by markedly enriching the representation of, among others, catalytic

reactions, transforming entities, and pathway information. Thanks to the formal

foundation, automated reasoning services can be used conventionally and ‘uncon-

ventionally’ to find (derive) implicit knowledge and be used in in silico hypothesis

testing, thereby contributing to biological knowledge discovery. To this end, a class

classification and three main query scenarios will be introduced and illustrated.

The remainder of this chapter introduces CMcom (Section 1.2), ontological and

language extensions to represent more complex knowledge more precise (Section 1.3),

4 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

and how automated reasoning can benefit biological knowledge discovery (Sec-

tion 1.4). We conclude in Section 1.5.

1.2 DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING

Description Logics (DL) languages are decidable fragments of first order logic and

are used for logic-based knowledge representation. They have been shown useful

for reasoning both over conceptual models like ER and UML [6, 9, 16] and ontology

languages such as OWL [50]. All DL languages have concepts (classes) and roles

(relationships, n-ary predicates with n ≥ 2), and have several constructs, therewith

giving greater or lesser expressivity to the language and efficiency of reasoning

over the logical theory. DL knowledge bases are composed of the Terminological

Box (TBox), which contains axioms at the concept-level, and the Assertional Box

(ABox) that contains assertions about instances; refer to [6] for details.

We first introduce DLR [12], which was developed to provide a formal charac-

terization of conceptual data modeling languages to enable automated reasoning

over them, to use it as unifying paradigm for database integration through inte-

grating their respective conceptual data models [16], and to compare conceptual

data modeling languages [36]. The basic elements of DLR are atomic relations (P)

and atomic concepts A, which allows construction of arbitrary relationships (arity

≥ 2) and concepts according to the following syntax:

R −→ >n| P | ($i/n : C) | ¬R | R1u R2

C −→ >1| A | ¬C | C1 u C2 | ∃[$i]R | ≤ k[$i]R

where i denotes a component of a relation; if components are not named, then

integer numbers between 1 and nmax are used, where n is the arity of the relation,

and k is a nonnegative integer for cardinality constraints. Only relations of the

same arity can be combined to form expressions of type R1u R2, and i ≤ n. The

model-theoretic semantics of DLR is specified through the usual notion of an in-

terpretation, where I= (∆I , ·I) and the interpretation function ·I assigns to each

concept C a subset CI of domain ∆I and assigns to each n-ary R a subset RI of

(∆I)n, such that the conditions are satisfied following Table 1.1.

A knowledge base is a finite set KB of DLR (or DLRifd) axioms of the form

C1 v C2 and R1 v R2. An interpretation I satisfies C1 v C2 (R1 v R2) if and

only if the interpretation of C1 (R1) is included in the interpretation of C2 (R2), i.e.

CI1 ⊆ CI2 (RI1 ⊆ RI2). >1 denotes the interpretation domain, >n for n ≥ 1 denotes

a subset of the n-cartesian product of the domain, which covers all introduced n-ary

Table 1.1 Semantics of DLR and DLRifd .

>I
n ⊆ (∆I)n AI ⊆ ∆I

PI ⊆ >I
n (¬C)I = ∆I \ CI

(¬R)I = >I
n \RI (C1 u C2)I = CI

1 ∩ CI
2

(R1 uR2)I = RI
1 ∩RI

2 ($i/n : C)I = {(d1, ..., dn) ∈ >I
n|di ∈ CI}

>I
1 = ∆I (∃[$i]R)I = {d ∈ ∆I |∃(d1, ..., dn) ∈ RI .di = d}

(≤ k[$i]R)I = {d ∈ ∆I ||{(d1, ..., dn) ∈ RI
1 |di = d|} ≤ k}

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 5

relations. The “($i/n : C)” denotes all tuples in >n that have an instance of C as

their i-th component. The following abbreviations hold: C1tC2 for ¬(¬C1u¬C2),

C1 ⇒ C2 for ¬C1 t C2, (≥ k[i]R) for ¬(≤ k − 1[i]R), ∃[i]R for (≥ 1[i]R), ∀[i]R
for ¬∃[i]¬R, R1 t R2 for ¬(¬R1 u ¬R2), and (i : C) for (i/n : C) when n is clear

from the context. Note that a qualified role ∃P.C is represented in DLRifd as

∃[$1](P u ($2/2 : C)), its inverse, ∃P−.C, as ∃[$2](P u ($1/2 : C)), likewise for

universal quantification (∀P.C as ¬∃[$1](P u ($2/2 : ¬C)) and its inverse ∀P−.C
as ¬∃[$2](P u ($1/2 : ¬C)) [12].

There are four extensions to DLR. The most relevant in the current scope are

DLRifd [13], because it can capture most or all of the common conceptual modeling

language features, and DLRUS , because it has an expressive temporal extension.

DLRifd has two additional constructs compared to DLR. It has identification as-

sertions on a concept C, which have the form (id C[i1]R1, ..., [ih]Rh), where each

Rj is a relation and each ij denotes one component of Rj . This is useful for external

uniqueness in ORM, weak entity types in ER, and objectification. It also caters

for non-unary f unctional dependency assertions on a relationship R, which have

the form (fd R i1, ..., ih → j), where h ≥ 2, and i1, ..., ih, j denote components of

R, which are useful primarily for UML’s methods and ORM’s derived-and-stored

fact types. Observe that there is no change in semantic rules because the algorithm

for the extensions is checked against a (generalized) ABox [13]. DLRUS has the

Until and Since operators for temporal ontologies and EER conceptual data models

(ERV T) [5, 2], which has been used for modeling essential parthood [3], relation

migration [42]. Generally, temporal extensions are very useful to represent con-

straints in molecular biology, such as formally characterizing that some enzymatic

reaction happens only after another, precedes it, or happens concurrently.

1.2.1 The generic common conceptual data model CMcom

Given the DLRifd syntax and semantics, we now can define the CMcom concep-

tual data modeling language; that is, given a particular conceptual data model in

the generic conceptual data modeling language CMcom, there is an equi-satisfiable

DLRifd knowledge base. The formalization adopted here is based on previous pre-

sentations [1, 13, 17, 36], with two principal extensions so as make better use of the

‘ifd’ features of DLRifd that have not been addressed in those earlier works. These

are the representation of weak entity types, UML’s (hardly used) sub-association

end and ORM’s subroles, role exclusion, and disjunctive mandatory roles, which

were hitherto used only for the more recent ORM2 to DLRifd mapping [38]. Given

that they are not harmful at all to UML and (E)ER, and UML CASE tool features

are moving in this direction, they are included in CMcom. Also, refinements with

respect to [36] are made concerning cardinality on relationships and on attributes,

disjointness of classes and of relations, and more precise constraints are added on

components of a relationship. We introduce the CMcom syntax in Definition 1, il-

lustrate it with an example by mapping several elements of the syntax to graphical

elements of EER, UML, and ORM2, proceed to the semantics in Definition 2, and

then show the mapping from CMcom to DLRifd in Definition 3.

6 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

Definition 1 (Conceptual Data Model CMcom syntax) A CMcom conceptual

data model is a tuple Σ = (L,rel,att,cardR,cardA, isaC , isaR, isaU ,disjC ,

coverC ,disjR,key,extk, fd,obj,rex,rdm) such that:

1. L is a finite alphabet partitioned into the sets: C (class symbols), A (attribute

symbols), R (relationship symbols), U (role symbols), and D (domain sym-

bols); the tuple (C,A,R,U ,D) is the signature of the conceptual model Σ.

2. att is a function that maps a class symbol in C to an A-labeled tuple over

D, att : A 7→ D, so that att(C) = {A1 : D1, . . . , Ah : Dh} where h a

non-negative integer.

3. rel is a function that maps a relationship symbol in R to an U-labeled tuple

over C, rel(R) = {U1 : C1, . . . , Uk : Ck}, k is the arity of R, and if (Ui, Ci) ∈
rel(R) then player(R,Ui) = Ci and role(R,Ci) = Ui. The signature of

the relation is σR = 〈U , C,player,role〉, where for all Ui ∈ U , Ci ∈ C,

if]U ≥]C then for each ui, ci, rel(R), we have player(R,Ui) = Ci and

role(R,Ci) = Ui, and if]U >]C then player(R,Ui) = Ci, player(R,

Ui+1) = Ci and role(R,Ci) = Ui, Ui+1.

4. cardR is a function cardR : C×R×U 7→ N×(N∪{∞}) denoting cardinality

constraints. We denote with cmin(C,R,U) and cmax(C,R,U) the first and

second component of cardR.

5. cardA is a function cardA : C × A 7→ N× (N ∪ {∞}) denoting multiplicity

constraints for attributes. We denote with cmin(C,A) and cmax(C,A) the

first and second component of cardA, and cardA(C,A) may be defined only

if (A,D) ∈ att(C) for some D ∈ D;

6. isaC is a binary relationship isaC ⊆ C × C.

7. isaR is a binary relationship isaR ⊆ R × R. isaR between relationships is

restricted to relationships with the same signature, i.e., given an R1 ⊆ R2

then σR1 = σR2 , and player(R1, Ui) ⊆ player(R2, Ui).

8. isaU is a binary relationship isaU ⊆ U×U . isaU between roles of relationships

is restricted to relationships with the same signature, i.e., given an R1 ⊆ R2

then σR1 = σR2 , and role(R1, Ci) ⊆ role(R2, Ci).

9. disjC ,coverC are binary relationships over 2C × C, describing disjointness

and covering partitions, respectively, over a group of isa that share the same

superclass.
10. disjR is a binary relationship over 2R × R, describing disjointness over a

group of relations.

11. key is a function, key : C 7→ A, that maps a class symbol in C to its key

attribute and A ∈ A is an attribute already defined in att(C), i.e., key(C)

may be defined only if (A,D) ∈ att(C) for some D ∈ D.

12. extk is called an identification assertion / external uniqueness / weak en-

tity type, which is a function that maps a class to a set of relation-role

pairs or attributes, extk : C 7→ 22
(R×U)∪A

, where R ∈ R, rel(R) so that

player(R,U) = C (with C ∈ C), and for any participating A ∈ A such that

(A,D) ∈ att(C) for some D ∈ D.

13. fd is a functional dependency assertion on a relation, fd : R 7→ 22
U×U where

U1, ..., Ui, Uj ∈ U denoting components of R ∈ R; fd(R) may be defined only

if role(R,Ci) ∈ rel(R) and i ≥ 2.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 7

14. obj is an objectification function that maps an n-ary relation symbol R ∈ R
to n binary relations r1, . . . rn ∈ R over C, i.e., obj : R 7→ C. Whenever

obj(R) = R′ with R′ ∈ C, role(R,Ci) = Ui and, with robj denoting the

relationification of the role, robj(Ui) = ri where ri is a new binary relation,

rel(ri) = {u1 : R′, u2 : Ci}, 2 ≤ i ≤ n, and extk(R′) = {u1[r1], . . . , u1[rn]},
and cmax(C, ri, u1) = 1.

15. rex, rdm are binary relations over 2U × U , describing disjointness parti-

tions over a group of roles U of relations in R of the same arity to which C
participates.

Thus, the explicit new features in CMcom compared to previous DL-focussed

definitions of conceptual modeling languages are isaU , disjR, extk, fd, obj, rex,

and rdm, which thereby introduces also the distinction between ‘simple’ keys (key)

and other keys like external uniqueness and natural keys (extk), and fds for UML

methods and ORM’s derived and derived-and-stored fact types.

One can map the CMcom syntax to any set of icons or fixed-syntax pseudo-

natural language as long as the relation between the CMcom syntax and icons or

pseudo-natural language has been specified. Put differently, with CMcom the map-

pings between the conceptual data modeling languages can be from one syntax (and

semantics) to many graphical and textual representations instead of developing and

maintaining m:n mappings between the various graphical languages. The follow-

ing example demonstrates the principal mechanism for CMcom syntax and icons in

UML Class Diagram, EER, and ORM2 notation.

Example 1 (Graphical syntaxes for CMcom) Figure 1.3 depicts a UML, an

EER, and an ORM2 diagram. The mappings from CMcom syntax to these graph-

ics are:

Author isa Person (directed arrow in UML, EER, ORM2)

card(Author, Writes, auth) = (1, n)

(1..* in UML, craw’s feet and line in EER, blob and line in ORM2)

key(Person) = id (underlined id in EER, (id) in ORM2)

{Author, Editor} disj Person
({disjoint} in UML, encircled d in EER, encircled X in ORM2)

{Author, Editor} cover Person

({complete} in UML, open shaft arrow in EER, encircled blob in ORM2)

Looking back at DLRifd in the introduction of this section and ahead to the demon-

stration that CMcom has an equi-satisfiable knowledge base (Definition 3), the

equivalent representation in DLRifd is as follows:

Author v Person (subsumption)

Author v ∃[auth]writes (at least one)

Person v ∃=1[From]id, > v ∃≤1[To](id u [From] : Person) (key)

Author v ¬Editor (disjoint)

Person v Author t Editor (covering)

One also can map the syntax to pseudo-natural language; e.g., for the isaand

NORMA’s verbalization pattern Each ... is an instance of ... one obtains for Authorisa

Person a domain expert readable surface rendering of Each Author is an instance of
Person; the others are shown in Figure 1.3-A. ♦

The model-theoretic semantics associated with CMcom is as follows.

8 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

 A

B C

For each Person, exactly one of the following holds:
 some Author is that Person; some Editor is that Person.
It is possible that more than one Author writes the same
 Book and that the same Author writes more than one Book.
Each Book, Author combination occurs at most once in the
 population of Author writes Book.
Each Author writes some Book.
For each Book, some Author writes that Book.

{disjoint,complete}

Figure 1.3 Examples of graphical syntaxes for CMcom with an ORM2 diagram drawn in
NORMA that also provides pseudo-natural language renderings (A), a UML Class Diagram
drawn in VP-UML (B), and an EER diagram drawn with SmartDraw (C).

Definition 2 (CMcom Semantics) Let Σ be a CMcom conceptual data model. An

interpretation for the conceptual model Σ is a tuple I = (∆I ∪∆ID, ·I), such that:

• ∆I is a nonempty set of abstract objects disjoint from ∆ID;

• ∆ID =
⋃

Di∈D∆IDi
is the set of basic domain values used in Σ; and

• ·I is a function that maps:

– Every basic domain symbol D ∈ D into a set DI = ∆IDi
.

– Every class C ∈ C to a set CI ⊆ ∆I .

– Every relationship R ∈ R to a set RI of U-labeled tuples over ∆I—

i.e. let R be an n-ary relationship connecting the classes C1, . . . , Cn,

rel(R) = {U1 : C1, . . . , Un : Cn}, then, r ∈ RI → (r = {U1 :

o1, . . . , Un : on} ∧ ∀i ∈ {1, . . . , n}.oi ∈ CIi).

– Every attribute A ∈ A to a set AI ⊆ ∆I × ∆ID, such that, for each

C ∈ C, if att(C) = {A1 : D1, . . . , Ah : Dh}, then, o ∈ CI → (∀i ∈
{1, . . . , h},∃ai. 〈o, ai〉 ∈ AIi ∧ ∀ai.〈o, ai〉 ∈ AIi → ai ∈ ∆IDi

).

I is said a legal database state or legal application software state if it satisfies all

of the constraints expressed in the conceptual data model:

• For each C1, C2 ∈ C: if C1 isaC C2, then CI1 ⊆ CI2 .

• For each R1, R2 ∈ R: if R1 isaR R2, then RI1 ⊆ RI2 .

• For each U1, U2 ∈ U , R1, R2 ∈ R, rel(R1) = {U1 : o1, . . . , Un : on},
rel(R2) = {U1 : o1, . . . , Um : om}, m = n, R1 6= R2: if U1 isaU U2, then

UI1 ⊆ UI2 .

• For each R ∈ R with rel(R) = {U1 : C1, . . . , Uk : Ck}: all instances of R are

of the form {U1 : o1, . . . , Uk : ok} where oi ∈ CIi , Ui ∈ UIi , and 1 ≤ i ≤ k.

• For each cardinality constraint cardR(C,R,U), then:

o ∈ CI → cmin(C,R,U) ≤ #{r ∈ RI | r[U] = o} ≤ cmax(C,R,U).

• For each multiplicity constraint cardA(C,A), then:

o ∈ CI → cmin(C,A) ≤ #{(o, a) ∈ AI} ≤ cmax(C,A).

• For all C,C1, . . . , Cn ∈ C: if {C1, . . . , Cn} disjC C, then,

∀i ∈ {1, . . . , n}.Ci isaC C ∧ ∀j ∈ {1, . . . , n}, j 6= i.CIi ∩ CIj = ∅.
• For all R1, ..., Rn ∈ R: if {R1, ..., Rn}disjR then ∀i ∈ {1, . . . , n}.RIi ∩RIj = ∅.

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 9

• For all C,C1, . . . , Cn ∈ C: if {C1, . . . , Cn} coverC C, then,

∀i ∈ {1, . . . , n}.Ci isaC C ∧ CI =
⋃n

i=1 C
I
i .

• For each C ∈ C, A ∈ A such that key(C) = A, then A is an attribute and

∀a ∈ ∆ID.#{o ∈ CI | 〈o, a〉 ∈ AI} ≤ 1.

• For each C ∈ C, Rh ∈ R, h ≥ 1, rel(Rh) = {U : C,U1 : C1, . . . , Uk : Ck},
k ≥ 1, k+1 the arity of Rh, such that extk(C) = {[U1]R1, . . . , [Uh]Rh}, then

for all oa, ob ∈ CI and for all t1, s1 ∈ RI1 , ..., th, sh ∈ RIh we have that:

oa = t1[U1] = ... = th[Uh]

ob = s1[U1] = ... = sh[Uh]

tj [U] = sj [U], for j ∈ {1, ..., h}, and for U 6= j

 implies oa = ob

where oa is an instance of C that is the Uj-th component of a tuple tj of Rj,

for j ∈ {1, ..., h}, and ob is an instance of C that is the Uj-th component of

a tuple sj of Rj, for j ∈ {1, ..., h}, and for each j, tj agrees with sj in all

components different from Uj, then oa and ob are the same object.

• For each R ∈ R, Ui, Uj ∈ U , for i ≥ 2, i 6= j, rel(R) = {U1 : C1, . . . , Ui :

Ci, Uj : Cj}, fd(R) = 〈U1, . . . , Ui → Uj〉, then for all t, s ∈ RI , we have that

t[U1] = s[U1], ..., t[Ui] = s[Ui] implies tj = sj.

• For each R, r1, . . . , rn ∈ R, R′, C1, . . . , Cn ∈ C, U1, . . . , Un, us1, . . . , usn,

ut1, . . . , utn ∈ U , rel(R) = {U1 : C1, . . . , Un : Cn}, obj(R) = R′, robj(Ui) =

ri, rel(ri) = {us1 : R′, ut1 : Ci}, 2 ≤ i ≤ n , extk(R′) = {us1[r1], . . . , usn[rn]},
card(R′, ri, usi) = (1, 1), card(Ci, ri, uti) = (0, 1), rel, card, and extk

interpreted as above, then ∀i ∈ {2, . . . , n}.{Ui, usi, uti ∈ UI ∧ r, ri ∈ RI ∧
oi, r

′ ∈ CI | usi ∈ UI → player(R,U) = r′ ∧ uti ∈ UI → player(R,U) =

oi}.
• For each Ui ∈ U , i ≥ 2, Ri ∈ R, each Ri has the same arity m (with m ≥ 2),

Cj ∈ C with 2 ≤ j ≤ i(m−1)+1, and rel(Ri) = {Ui : Ci, . . . Um : Cm} (and,

thus, Ri ∈ RIi and oj ∈ CIj), if {U1, U2, . . . Ui−1} rex Ui, then

∀i ∈ {1, . . . , i}.oj ∈ CIj → cmin(oj , ri, ui) ≤ 1 ∧ ui 6= u1 ∧ . . . ∧ ui 6= ui−1
where ui ∈ UIi , ri ∈ RIi .

• For each Ui ∈ U , i ≥ 2, Ri ∈ R, each Ri has the same arity m (with m ≥ 2),

Cj ∈ C with 2 ≤ j ≤ i(m − 1) + 1, and rel(Ri) = {Ui : Ci, . . . Um : Cm}, if

{U1, U2, . . . Ui−1} rdm Ui, then
∀i ∈ {1, . . . , n}.oj ∈ CIj → cmin(oj , ri, ui) ≥ 1 where ui ∈ UIi , ri ∈ RIi .

We summarize how DLRifd can capture conceptual models expressed in CMcom,

following the same approach as [1, 36] and extended with the new features.

Definition 3 (Mapping CMcom into DLRifd) Let Σ = (L,rel,att,cardR,

cardA, isaC , isaR, isaU ,disjC ,coverC ,disjR,key,extk, fd,obj,rex,rdm) be a

CMcom conceptual data model. The DLRifd knowledge base, K, mapping Σ is as

follows.

• For each A ∈ A, then, A v From :> u To :> ∈ K;

• If C1 isaC C2 ∈ Σ, then, C1 v C2 ∈ K;

• If R1 isaR R2 ∈ Σ, then, R1 v R2 ∈ K;

• If U1 isaU U2 ∈ Σ, then K contains: [U1]R1 v [U2]R2; R1 v ¬R2;

• If rel(R) = {U1 :C1, . . . , Uk :Ck} ∈ Σ, then R v U1 :C1 u . . . u Uk :Ck ∈ K;

10 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

• If att(C) = {A1 : D1, . . . , Ah : Dh} ∈ Σ, then, C v ∃[From]A1 u . . . u
∃[From]Ah u ∀[From](A1 → To : D1) u . . . u ∀[From](Ah → To : Dh) ∈ K;

• If cardC(C,R,U) = (m,n) ∈ Σ, then, C v ∃≥m[U]R u ∃≤n[U]R ∈ K;

• If cardA(C,A) = (m,n) ∈ Σ, then, C v ∃≥m[U]R u ∃≤n[U]R ∈ K;

• If {C1, . . . , Cn} disjC C ∈ Σ, then K contains: C1 v C u ¬C2 u . . . u ¬Cn,

C2 v C u ¬C3 u . . . u ¬Cn, . . ., Cn v C;

• If {R1, ..., Rn}disjR ∈ Σ, then K contains: R1 v ¬R2 u . . . u ¬Rn, R2 v
¬R3 u . . . u ¬Rn, . . ., Rn−1 v ¬Rn;

• If {C1, . . . , Cn} coverC C ∈ Σ, then K contains: C1 v C, . . ., Cn v C;

C v C1 t . . . t Cn;

• If key(C) = A ∈ Σ, then, K contains: C v ∃=1[From]A; > v ∃≤1[To](A u
[From] : C);

• If extk(C) = {[U1]R, . . . , [Uh]Rh} ∈ Σ, then K contains:

(id C [U1]R1, . . . , [Uh]Rh);

• If fd(R) = 〈U1, . . . , Ui → j〉 ∈ Σ, then K contains: (fd R U1, . . . , Ui → j);

• If obj(R) = R′, then K contains: (id R′ [us1]r1, . . . , [usn]rn);

R′ v ∃[us1]r1 u (≤ 1[us1]r1) u ∀[us1](r1 ⇒ (ut1 : C1))u
∃[us2]r2 u (≤ 1[us2]r2) u ∀[us2](r2 ⇒ (ut2 : C2))u
. . .

∃[usn]rn u (≤ 1[usn]rn) u ∀[usn](rn ⇒ (utn : Cn));

• If {U1, U2, . . . Ui−1} rex Ui ∈ Σ, then K contains: C v (∃≤1[U1]R1 t . . . t
∃≤1[Ui]Ri); [U1]R1 v ¬[U2]R2 u . . . u ¬[Ui−1]Ri−1, [U2]R2 v ¬[U3]R3 u . . . u
¬[Ui−1]Ri−1, . . ., [Ui−1]Ri−1 v ¬[Ui]Ri;

• If {U1, U2, . . . Ui−1} rdm Ui ∈ Σ, then K contains: C v (∃≥1[U1]R1 t . . . t
∃≥1[Ui]Ri); [U1]R1 v ¬[U2]R2 u . . . u ¬[Ui−1]Ri−1, [U2]R2 v ¬[U3]R3 u . . . u
¬[Ui−1]Ri−1, . . ., [Ui−1]Ri−1 v ¬[Ui]Ri;

Thus, CMcom has an equi-satisfiable DLRifd knowledge base and therewith we

can avail of the nice computational properties of DLRifd [9, 13]. One could have

chosen another expressive DL language as formal foundation, such as OWL 2 DL

[50] with a corresponding mapping to a CM′com. However, such a CM′com would

have rel restricted to binaries, it would not have extk, fd,obj,rex, and rdm, but

gained the option to represent transitivity, reflexivity, irreflexivity, asymmetry, and

symmetry. Those gains with the relational properties, however, are useful only to

formalize ORM’s ring constraints and come at the cost of 2NExpTime complexity

in concept and theory satisfiability (DLRifd is in ExpTime). There are always

tradeoffs in a formalization, and the priority here is being able to deal with the

core features of conceptual data modeling languages before extending one’s horizon.

As we shall see in Section 1.2.2, CMcom is the greatest common denominator by

capturing most or all features of EER, UML Class Diagrams, and ORM.

1.2.2 EER, UML, and ORM in terms of CMcom

With the formal apparatus in place, we now can consider definitions of EER, UML,

and ORM 2 in terms of CMcom. The rationale for the exact combination of con-

straints has been explained and discussed in detail elsewhere [36] (e.g., regarding

UML’s OCL [55], aggregation [41], and identification [40]). The “−” in “ORM2−”

is due to, mainly, ORM’s undecidability due to constraints over k roles over an

DESCRIPTION LOGICS FOR CONCEPTUAL DATA MODELING 11

n-ary relation, n ≥ 3, and k < n [38], and the unknown computational complexity

of antisymmetry (the fine-grained arguments are beyond the current scope). The

important point here is to have basic definitions so as to focus on language features

and the ontology-driven aspects.

Definition 4 (CMEER) A CMEER conceptual data model is a tuple

Σ = (L,rel,att,cardR, isaC ,disjC ,coverC ,key,extk)

adhering to CMcom syntax and semantics.

Definition 5 (CMUML) A CMUML conceptual data model is a tuple

Σ = (L,rel,att,cardR, isaC , isaR,disjC ,coverC ,extk, fd,obj,pw)

adhering to CMcom syntax and semantics, except for the aggregation association

pw, with syntax pw = {U1 : C1, U2 : C2}, that has no defined semantics.

Definition 6 A CMORM2− conceptual data model is a tuple

Σ = (L,rel,att,cardR,cardA, isaC , isaR, isaU ,disjC ,coverC ,key,extk,

fd,obj,disjR,rex,rdm)

adhering to CMcom syntax and semantics.

There is a notable difference between CMEER, CMUML, and CMORM2− . Al-

though it is possible to include isaU for UML’s association ends in CMUML and

interpret the OMG standard [52] liberally on keys (key and extk; see [40] for

a discussion) and attributes (by modeling them external to the class so that one

can use cardA), this is yet to be refined in the standard and implemented in the

CASE tools. From an HCI perspective, a less expressive language may be pleas-

ing for a novice modeler, but it is worth noting that extensions have been deemed

necessary [34] and were proposed for EER to address better the requirements of

molecular biologists [21] (discussed in Section 1.3). Here we illustrate two modeling

aspects—role exclusion and ternaries—and their solutions with CMcom.

Example 2 (Modeling features in the graphical and formal languages)

Let us take Kazic’s complaint on not being able to represent thymidine phospho-

rylase binding with thymidine or phosphate [33]. This requires an exclusion con-

straint over roles (rex), which is possible to represent with ORM and CMORM2− ,

as demonstrated in Figure 1.4-A, but not in the EER or UML graphical syntax.

Formally, we have {bindsT, bindsP} rex binds in CMcom, and thus the DLRifd
knowledge base K contains

ThymidinePhosphorylase v (∃≤1[bindsT]binds1 t ∃≤1[bindsP]binds2),

[bindsT]binds1 v ¬[bindsP]binds2.

Clearly, the formal foundation now underpinning EER and UML with CMEER and

CMUML permits one to add such constraints to the respective graphical language.

The widely noted OWL shortcoming of n-ary relationships with n ≥ 3 can

be handled easily in CMcom, because we can with DLRifd . Figure 1.4-B depicts

a ternary for recording epidemiological data on the path of infection of partic-

ular HIV subtypes from Donor to Recipient, which is represented in CMcom as

rel(HIVtransmission) = {object : HIVsubtype, from : Donor, to : Recipient},
where object, from and to are the roles played by the objects (not depicted in

Figure 1.4-B). The corresponding translations into DLRifd is:

HIVtransmission v [object]HIVsubtype u [from]Donor u [to]Recipient. ♦

12 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

Thymidinephos
phorylase

Thymidine

Phosphate

binds / bound to

binds / bound to

[bindsT]

[bindsP]
HIVsubtype

Donor

Recipient

[HIVtransmission]

... transmitted from ... to ...

A. B.

Figure 1.4 ORM2 examples. A: role exclusion, which cannot be represented in standard
UML and EER; B: ternary relation, which cannot be represented fully in OWL.

Such differences in both graphical syntax and the underlying formalization are

being investigated [1, 9, 16, 36, 38, 55] and proof-of-concept implementations exist

[22, 56]. What they have in common is the use of a decidable logic language so as to

guarantee that the reasoning services terminate. We will look at several reasoning

scenarios in Section 1.4.1.

1.3 EXTENSIONS

The need for extensions of conceptual data modeling languages clearly depends on

which language one chooses to extend, because each one differs in expressiveness,

as we have seen in the previous section. In addition to the expressiveness within

DLRifd —say, adding key or isaU to CMUML (hence, to UML)—one can add

features to the language that go beyond DLRifd or even beyond first order predicate

logic. Such extensions are motivated by the identification of what to represent and

how in order to better capture the subject domain semantics. We shall look first at

the former, which concerns incorporating notions of Ontology that generally require

extensions to the language, which will be addressed afterward.

1.3.1 Ontology-driven modeling

The case for ontology-driven conceptual data modeling is described in some detail

in [26, 27]: notions from philosophy can be used to solve modeling issues, im-

prove conceptual data models, and provide explanations why one representation of

a piece of information is better than another. Methodologically, this can be done

by (i) providing a solution to a recurring modeling problem, (ii) using an ontology

to generate several conceptual data models (preliminary solutions are described in

[20, 32, 61]), and (iii) integrating (a section of) an ontology into the conceptual data

model that subsequently is converted into data in the database; they were depicted

in bold-face with respect to the traditional waterfall methodology of database and

software development in Figure 1.2. The first two options are young fields of re-

search, whereas the third option is used widely in bioinformatics databases where,

e.g., the Kyoto Encyclopedia of Genes and Genomes (KEGG) [44] or the Gene On-

tology (GO) [24] are used for annotation of gene products, thereby linking primary

and boutique databases, such as Uniprot [62] and the Horizontal Gene Transfer

DataBase (HGT-DB) [23].

EXTENSIONS 13

Option (i) considers (re-)usable components of foundational ontologies such as

the Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE) [49],

Basic Formal Ontology (BFO) [10], or General Formal Ontology (GFO) [31], be-

ing the high-level categories and generic relationships, such as the distinction be-

tween endurants and perdurants, and relationships like parthood, participation,

and dependency. It provides modeling guidance, and informs and refines language

features, such as relational properties like transitivity, positionalism of relations,

and identification mechanisms. In all cases, it offers answers how to best represent

some piece of information and provides justifications why. The most prominent

results of ontology-driven modeling to solve a recurring modeling issue is that of

part-whole relations [3, 4, 29, 35, 41]. These refinements deal both with clarifying

the different types of part-whole relations and how the entities participate the rela-

tion. The part-whole relations can be structured in a hierarchy [41], which, in turn,

contributes to correct usage and deductions in the conceptual data model and, if

linked to data, enhances capabilities for information retrieval.

Example 3 (Ontology-driven conceptual data modeling: parthood) A cell

nucleus is spatially contained in an eukaryotic cell, but not a structural part of it,

whereas the region occupied by the nucleus is proper part of the region occupied by

the eukaryotic cell it contains (proper parthood implies proper containment, but

not vice versa). A cell receptor is a structural part of a cell wall’s lipid bi-layer but

not a proper part, because part of the receptor is external to it.

Let rel(hasStructuralPart) = {whole : 3-Chlorobenzoate, part : Benzene}
and hasStructuralPart isaR hasPart, then a query “retrieve all molecules that

hasPart some Benzene” will have in the query answer 3-Chlorobenzoate despite

it not being represented explicitly: it is inferred thanks to the isaR assertion. A

query “retrieve all molecules that hasStructuralPart some Benzene” will not re-

turn enzyme-substrate complexes involving benzene rings where the benzene ring

is spatially contained in the ‘hole’ or lock of the receptor in the receptor-ligand in-

teraction; hence, with a differentiation between parthood and containment (among

others), the query answer will not contain false positives or noisy information. ♦

In addition to refining particular relationships, there are guidelines from Ontol-

ogy and AI to design a good taxonomy, such as using ideas from the OntoClean

method [28]. OntoClean relies on meta-level properties, such as rigidity, and the

foundational ontologies help identifying the nature of the class or relationship under

consideration. For instance, Protein has the property of being rigid (each individ-

ual object that is member of a Protein class is a protein for its entire existence),

whereas Enzyme is anti-rigid (each individual enzyme is not necessarily always an

enzyme), and an anti-rigid class cannot subsume a rigid one. Hence, one should not

have Protein isaC Enzyme in the model, but Enzyme isaC Protein instead. Digging

deeper, we see that the essential property of an enzyme is to catalyze a reaction,

which is the function or role that the molecule performs, and it may be that at some

point in time that protein still exists but is somehow defective in its functioning as

enzyme. Similarly, one might encounter Tetanospasmin isaC Zinc-Endopeptidase

and Zinc-Endopeptidase isaC Toxin in a conceptual data model: tetanospasmin is

indeed a zinc-endopeptidase and a toxin produced by Clostridium tetani, but it only

has the role of being a toxin in humans, as C. tetani uses the enzyme in its natural

14 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

functioning of the cell. A solution pattern to better model this type of information is

provided by a foundational ontology: one creates a hierarchy for rigid properties and

one for anti-rigid ones that, in turn, inhere in or depend on the rigid ones, thereby

distinguishing between what it structurally is and what it functionally does, which

leads to an assertion like rel(inheresIn) = {role : Enzyme, bearer : Protein}.
Fortunately, one does not have to start from scratch anymore with such analy-

ses in the subject domain of molecular biology, as several ontologies exist that take

this approach (e.g., BioTop [8]), which can be used in the way as outlined in option

(ii) in the introduction of this section. Overall, this will result in better conceptual

data models, which is illustrated in the next example for catalytic reactions.

Example 4 (Ontology-driven conceptual data modeling: catalysis) Cata-

lysis has three principal participants: molecule(s) in, out, and the enzyme that

catalyzes the reaction. Elmasri et al. [21] proposes a “process relationship” in

EER to represent the static (atemporal) aspects of chemical processes, which is

depicted in Figure 1.5-A, which can be scaled up trivially to multiple inputs, out-

puts, and/or catalysts. However, the three entities are all molecules and, more

importantly, some molecule can be both an Einput and an Eoutput in differ-

ent reactions or the Eoutput molecule is also the Ecatalyst (autocatalytic re-

action). Modeling the molecule’s roles in a certain situation as different entity

types results in duplication of data, which, in turn, leads to inconsistencies or

‘dirty’ data in the database or application. The minimalist approach that avoids

these problems is shown in Figure 1.5-B, but it is unsatisfactory due to its lack

of detail. To really solve it, we use a foundational ontology for modeling guid-

ance, and the Basic Formal Ontology [10] and Relation Ontology [60] in particu-

lar. Then, the molecule’s structural characteristics—like being a Protein consist-

ing of amino acids—are distinguished from the role it plays—like Enzyme—and

matched with entity types in BFO: Protein isaC Molecule, Molecule isaC Object,

and Enzyme isaC Role, which are related through a refinement of the RO inherence

relation such that role isaR inherence, rel(role) = {role : Enzyme, bearer :

Protein}, and card(Enzyme, role, role) = 1..1. Object’s superclass in BFO is

IndependentContinuant (IC), and Role’s superclasses are RealizableEntity,

SpecificallyDependentContinuant, and DependentContinuant, and, more gen-

erally with respect to the RO, rel(inherence) = {role : DC, bearer : IC}. Practi-

cally in the conceptual data model, the two branches from the BFO hierarchy can

be added in whole or in abbreviated form, which is indicated with the dashed lines

and rectangles in Figure 1.5-C. This conceptual model fragment already solves the

problem of data duplication that would occur with a database based on the concep-

tual model from Figure 1.5-A and facilitates querying such that the query answer

will have less noisy results (see also Examples 3 and 6). ♦

1.3.2 More expressive languages

Multiple extensions to conceptual data modeling languages exist, of which the most

interesting one from a molecular biology perspective is the temporal dimension, i.e.,

to have a means to specify unambiguously what changes, how, and under which

conditions. This can be an object instantiating different classes at different points

EXTENSIONS 15

Einput

Eoutput

Ecatalyst R

i

o

c P

Molecule

EnzymeCatalysis
in

out

mediates
1..n

0..n
1

E R
in

out

mediates

Cofactor

mediates

1..n

role

role

BFO:Independent
Continuant

BFO:Dependent
Continuant

BFO:Continuant
A.

B.

C.

inherence

Protein 1

1

0..1

0..n

Figure 1.5 Static aspects of modeling single processes (catalytic reactions) in EER. A:
Elmasri et al.’s [21] proposal, with input, output and catalyst molecules; B: The essential
roles played; C: An example of a more refined representation of catalysis, informed by
ontology, where the dashed entities and subsumption relationships are a fragment of BFO.

in time (called object migration), attributes that hold for a specific duration, or the

relation between objects changes (relation migration). For instance, each immune

system cell Macrophage must have been an instance of Monocyte beforehand, i.e., it

“dynamically evolved” (dev−) [37], the value for DNA’s attribute hasFoldingState
changes to unfolded only for the duration that it is being transcribed, and the

enzyme inheres in the molecule that is also a substrate in an autocatalytic reaction,

so the interaction “dynamically extends” (Rdex) [42] to autoCatalysis, where Rdex

can be defined using a temporal interpretation [42]:

R Rdex R′ if and only if 〈o1, o2〉 ∈ RI(t) → ∃t′ > t.〈o1, o2〉 ∈ R′
I(t′)

(1.1)

where R, R′ are relationships, t, t′ ∈ Tp and Tp is a set of time points, and ·I(t) the in-

terpretation function for a given snapshot of the state of affairs at that time. An ele-

gant extension to CMcom can handle this (introduced below), so that the conceptual

data model contains assertions such as rel(role) = {bearer : RNAmolecule, role :

Ribozyme} and rel(autoCatalysis) = {substrate : RNAmolecule, catalyst :

Ribozyme}, and such that role Rdex autoCatalysis holds. Another typical chal-

lenge is how to represent metabolic pathways or genetics’ Central Dogma with its

part-processes in a specific sequence.

To cater for the representation of this kind of information, the first questions to

answer are: which fundamental aspects involving time have to be represented, which

language features does it require, and how to do that in a conceptual data model

in such a way that it can be stored by the software and checked on consistency?

Extant proposals include adding an ordered bag to EER to represent a notion of

sequence of events [21] and using UML’s sequence and activity diagrams (to model

SARS-CoV infection) [58] that can represent processual information, although the

16 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

UML diagrams have no formal foundation. Both proposals, however, do not let one

represent concurrent reactions, detect inconsistencies (e.g., contain a cycle where

there should not be one), or derive implicit information about such dynamic infor-

mation. To be able to do so, one has to be able to represent the reactions as n-ary

relationships, which can be represented in CMcom, and formalize notions such as

‘precedes’, ‘during’ and similar natural language terms, which requires a language

extension. For instance, we have to include somehow that “a immediately precedes

b” means that we have not only (a, t) and (b, t′) but also for each time point that

¬∃t′′.t < t′′ < t′ and t 6= t′, where t, t′, t′′ ∈ Tp. One can formalize “a during

b” and the other 11 Allen temporal relations using the same approach. MADS

[53] for spatio-temporal conceptual data modeling is fairly comprehensive, though

its inclusion of temporal knowledge representation has been extended informed by

a DLRUS foundation that also has a mapping to the temporally extended EER,

called ERV T [5]. DLRUS is in the same DL family as DLRifd , but it does not

have the “ifd” features—hence, compared to CMcom, it will not have extk, fd,

and obj—and instead has temporal classes, relationships, attributes, and evolu-

tion constraints to specify what changes, and how. Let us briefly illustrate this for

temporal classes. A fragment of the DLRUS syntax is:

C → > | ⊥ | A | ¬C | C1 u C2 | C1 t C2 | ∃≶k[Uj]R |
3+C | 3−C | 2+C | 2−C |⊕C | 	C | C1 U C2 | C1 S C2

where the first line is the same as what we have seen for DLR and the second line

introduces the temporal operators. The semantics of these operators are as follows.

First, the Until and Since operators, where (u, v) = {w ∈ T | u < w < v}:
(C1 U C2)I(t) = { d ∈ >I(t) | ∃v > t.(d ∈ CI(v)2 ∧ ∀w ∈ (t, v).d ∈ CI(w)

1)};
(C1 S C2)I(t) = { d ∈ >I(t) | ∃v < t.(d ∈ CI(v)2 ∧ ∀w ∈ (v, t).d ∈ CI(w)

1)}.
Second, U and S together with ⊥ and > suffice to define the other ones: the

temporal operator 3+ (some time in the future) as 3+C ≡ > U C, ⊕ (at the

next moment) as ⊕C ≡ ⊥U C, and likewise for their past counterparts 3− (some

time in the past) as 3−C ≡ > S C and 	 (at the previous moment) as 	C ≡
⊥ S C. The operators 2+ (always in the future) and 2− (always in the past)

are the duals of 3+ and 3− (some time in the past), respectively, i.e., 2+C ≡
¬3+¬C and 2−C ≡ ¬3−¬C, and, finally, the operators 3∗ (at some moment)

and its dual 2∗ (at all moments) can be defined as 3∗C ≡ C t 3+C t 3−C

and 2∗C ≡ C u 2+C u 2−C, respectively. This is similar for relationships in

DLRUS . Then, we can perform the same procedure as for CMcom: generate a fixed

textual version for CM−com+temporal extension, tCM (alike Definition 1), declare

a mapping from tCM to a graphical syntax for the temporal operators, fix the

semantics (alike Definition 2), and declare a mapping (alike Definition 3) to show

that for each tCM there is an equi-satisfiable DLRUS knowledge base. This has

been done already for EER without extk, fd and obj [5] (named ERV T), which

we shall not repeat here, but illustrate with the aforementioned examples. The

“Rdex” of aforementioned assertion role Rdex autoCatalysis can be added to

the language’s syntax (to a Definition 1′ for tCM), the semantics as in Eq. 1.1 aded

to a Definition 2′, and a mapping into DLRUS as R v 3+R′ added to a Definition 3′.

The dynamic evolution constraint for classes is represented syntactically as C dev

C′, has a semantics of o∈ CI(t)→∃t′ > t.o∈ C′I(t
′)∧o 6∈ CI(t′), and is mapped into

EXTENSIONS 17

DLRUS as C v 3+(C′ u ¬C). We now also can distinguish between the “a precedes

b”, i.e., a at holds at some time before b, 3−, and “a immediately precedes b”, 	 .

This extension is particularly useful in molecular biology for modeling (and, as we

will see later, checking consistency of) metabolic and biosynthetic pathways, which

is illustrated in the next example.

Example 5 (Language extensions: temporal) We can use the dev evolution

constraint to represent formally a meaningful relation between afore-mentioned

Monocyte and Macrophage: in the normal course of things, each monocyte transforms

into a macrophage, but such a cell is never both at the same time, hence, the concep-

tual data model has Monocyte dev Macrophage (i.e., Monocyte v 3+(Macrophage

u¬Monocyte) in the DLRUS knowledge base); it is trivial to model this the other

way around with dev− (that each macrophage must have been a monocyte earlier).

Let us now consider SARS viral infection events [58] that informally asserts

that first the virus binds to the receptor, then either the membranes fuse or the

virus detaches from the cell, and the virus enters the cell only after membrane

fusion. Informed by a foundational ontology, one can create either a hierarchy of

processes (Binds isaC Process etc.) and such that each process has participants

(rel(hasParticipant) = {process : Binds, participant : Virus} and rel(has-

Participant) = {process : Binds, participant : CellReceptor} etc,), or a more

compact representation by creating relationships rel(binds) = {binder : Virus,

bindsTo : CellReceptor} and likewise for rel(membraneFusion), rel(detach),

and rel(viralEntry). As it does not matter which option we choose thanks to

having temporal operators on both classes and relations in DLRUS , let us take the

second option. Then, given the subject domain semantics, ViralEntry v 3− Binds

must hold (“for each viral entry, it must have been bound some time before”), but

not the converse (Binds v 3+ ViralEntry) because the virus may detach. Regard-

ing instances and tuple migration in a scenario of, say, simulations or processing

annotations of video about cell processes, then the intention to add a migration

from 〈virus1, cell1〉 ∈ viralEntry to 〈virus1, cell1〉 ∈ membraneFusion should

result in a violation of the integrity constraint suggested by the subject domain

knowledge of the database. This cannot be guaranteed in software based on plain

UML, EER, or ORM, but can with the additional temporal extension; hence, it

ensures that the data represents events in reality more precisely with less errors. ♦

Besides temporality, one can add, among others, fuzzy, rough, or probabilistic

features (e.g., fuzzy DLR [47]), which offer further options for creative modeling.

For instance, DLRUS has been shown to be useful to define the notions of essential

and immutable parts [3], the fuzzy extension can cope with inclusion of a concept like

Small Molecule that has no clear cut-off point for the actual size, and probabilistic

knowledge can be used to represent ‘default’ and ‘typical’ cases [45]. The tradeoff,

however, is that while the additional features are great for modeling biological

knowledge more precisely, it negatively affects automated reasoning services and

scalability of the information systems—and it is exactly the automated reasoning

services that contribute to in silico biological knowledge discovery.

18 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

1.4 AUTOMATED REASONING AND BIOLOGICAL KNOWLEDGE
DISCOVERY

In this section, we briefly describe how various automated reasoning services and

sophisticated querying can be used in the domain expert’s ‘toolbox’ for biological

knowledge discovery.

1.4.1 Exploiting automated reasoning services

A major advantage of the formal foundation for the conceptual data modeling lan-

guages with DLRifd is its decidability, hence, the guarantee that the reasoning

services that can be deployed for in silico biological knowledge discovery will termi-

nate; more precisely, DLRifd is ExpTime-complete, hence, so is CMcom. As a basis,

we can use so-called ‘standard’ reasoning services for checking diagram and class

consistency, class subsumption reasoning, and certain other implicit consequences.

We describe them here briefly in terms of DL:

• Conceptual data model consistency: the whole conceptual data model Σ is

consistent if it admits an instantiation, i.e., all classes in C can be populated

without violating any of the constraints; formally in DLRifd : Σ 2 > v ⊥;

• Class consistency: a class C ∈ C is consistent if Σ admits an instantiation in

which the class has a nonempty set of instances; formally: Σ 2 C v ⊥;

• Class subsumption: a class C1 subsumes a class C2 (i.e, C2 isa C1 in Σ), if

Σ implies that C1 is a generalization of C2 (or: all instances of C2 are also

instances of C1), with C1, C2 ∈ C; formally: Σ |= C2 v C1;

Berardi et al. [9] also include refinement of multiplicities and typing for UML Class

Diagrams, which means that the interaction of properties of several related classes

may results in stricter multiplicities or typing than has been specified explicitly in

Σ, and this service can be applied to CMcom as well. In addition, we can avail of two

more reasoning services commonly used with DL knowledge bases, but only if one

somehow combines the conceptual data model Σ with the instances in the software

application or database. These services are instance classification—is a a member of

C in Σ? i.e., Σ |= C(a)—and instance retrieval, meaning to compute all individuals

a such that C(a) is satisfied by every interpretation of Σ (i.e., {a | Σ |= C(a)}).
A notable achievement in biological data discovery using automated reasoning

has been the classification of protein phosphatases [63], where a novel protein phos-

phatase was discovered. It has also been used for finding suitable molecules in

rubber manufacturing that matched the criteria (i.e., chosen attributes) [7], whose

approach can be employed also in pharma-informatics when looking for drug can-

didates. For instance, to search for potential antibiotics by using criteria for the

desired molecule such as ‘has as part a β-lactam ring’, ‘is water-soluble’, and that

also ‘function as enzyme inhibitor’. Automated reasoning is illustrated in the next

example with enzymes, proteins, substrate and co-factors.

Example 6 (Reasoning over an ontology-driven conceptual data model)

Let us take a ontology-enhanced sample UML diagram about enzymes, as shown

in Figure 1.6, that is both formalized in CMcom (with rel(inheresIn) = {role :

Enzyme, bearer : Protein}, card(Enzyme, Protein, inheresIn) = (1, n) etc.) and

the enzymes, proteins, substrates, and cofactors are extracted from one or more

AUTOMATED REASONING AND BIOLOGICAL KNOWLEDGE DISCOVERY 19

Protein E4

E3Enzyme

E2

E5

S2S3 Substrate

S1 {disjoint}

C1

C2
ii

ii ii

ii

ii

subs

subs
coF

coF Protein

E4

E3

Enzyme

E2

E5

S2

S3

Substrate

S1

{disjoint}

C1

C2

ii

subs

subs

coF

coF

classification

Figure 1.6 Sample CMUML before (left) and after (right) classification (multiplicity not
drawn); associations: ii: inheres in; subs: has substrate; coF: has co-factor.

ontologies—i.e., they are ontology modules adapted for conceptual data modeling;

see Section 1.3.1 and Figure 1.1)—such as the PRO protein ontology [51] and Biopax

[19]. Class subsumption reasoning re-orders the classes in the taxonomy accord-

ing to the properties they have; e.g., for E2, we have not only rel(inheresIn) =

{role : E2, bearer : Protein}, but also rel(hasSubstrate) = {actor : E2, actee :

S2}, i.e., one more property than Enzyme, hence, all instances of E2 must also be in-

stances of Enzyme in all possible models and therefore E2 isa Enzyme holds. E5 does

not have more properties, but S3 isa S2 and therefore E5 isa E2. Second, if the di-

agram would have had card(E3, C1, coF) = (1, 1) and card(E4, C2, coF) = (1, n),

then it would have deduced card(E4, C2, coF) = (1, 1) as refined cardinality to

comply with the inherited constraint. Now, if we add the hasSubstrate asso-

ciation to E3, then several things can happen, depending on the substrate: (i)

if rel(hasSubstrate) = {actor : E3, actee : S2}, then the reasoner will deduce

E3 isa E2, (ii) if rel(hasSub- strate) = {actor : E3, actee : S3}, then E3 isa E5,

and (iii) if rel(hasSubstrate) = {actor : E3, actee : S1}, then E3 isa Enzyme (be-

cause {S1, S2} disjC Substrate).

Querying is a form of reasoning, too, which can be done over the conceptual

data model itself, over a database, or their combination [14, 15]. For instance,

an automated reasoner evaluates “retrieve all enzymes that have C1 as coFactor”

by traversing the tree from Enzyme down to all classes that have an association

coFactor with C1 as class at the other end. In the case of the conceptual data

model depicted in Figure 1.6, it will return E3, E4 as answer: E3 because it is
directly related and E4 because each C2 is also a C1. ♦

1.4.2 Finding new relationships and classes by using instances

Combining conceptual data models and the data in the information system is chal-

lenging and, to the best of our knowledge, no end-user usable implementations have

been realized for the scenarios described in this section. The idea is that instances

will justify information represented in the conceptual data model and that the

model is used for analyzing instances, so that the requirements are essentially those

for a knowledge base (TBox & Abox), and in particular scalability of reasoning

over a conceptual data model in the presence of large amounts of data stored in

a database (see, e.g., [14, 46] for preliminary results). Focusing on the advantages

this option offers, there are three patterns for discovering implicit knowledge in

20 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

Name
PID

Client LactoseIn
tolerance1..n

Nausea0..n

hasDigestive
Discomfort

hasSymptom

?

Gs Protein

alpha-
subunit

Cholera
Toxin

?

?

...?

Name
ID
HGTpct

Bacterium HGT
Cluster

0..nhas
Cluster

?

5..n

hasCluster

HGTpct > 20

Promiscuous
Bacterium

I. III.II.

Figure 1.7 Graphical depictions of the three query patterns to find ‘new’ classes or
relationships supported by the data; (i): correlation; (ii): hypothesis about existence of
subclass PromiscuousBacterium; (iii): path query to check whether the Gs protein somehow
relates to the alpha-subunit of the CholeraToxin.

standard knowledge bases [43]. For brevity, let lower-case letters denote instances

of their respective classes in the conceptual data model, then we have:

i. “for each X(x), Y (y), R(r), R(X,Y), does there exist a Z(z), S(s), such that

there exists ≥ 1 x and s(x, z)?”. This is a query for the ‘known unknown’ Z.

ii. “for each X(x), Y (y), R(r), R(X,Y) in the data store, does there exist an

s(x, z) and an t(x, a) where Z(z), S(s), A(a), T (t) hold?” This tests the

hypothesis that there may be a quaternary relationship among A, X, Y ,

and Z instead of three binaries, or perhaps a subtype X ′ that satisfies the

conditions.

iii. A path query (arbitrary relatedness): “for each X(x), return any r1, ...rn,

their type of role and the concepts Y1, ..., Yn they are related to”.

The first pattern is illustrated in Figure 1.7-I in the setting of electronic health

records where X = Client, S = has symptom, and Z = Nausea, thereby querying if

patients suffering from lactose intolerance have the symptom of being nauseous.

The aim in the third pattern is to find type-level knowledge where the query

answer also includes the class the instance(s) belong to. This still can be tractable

if one considers only classes directly related to X, but exploring the search space of

sequences of conjunctive queries of arbitrary length is unrealistic. Restricted queries

have been examined regarding discovering the relationships between Histone code,

DNA sequence, and Gene expression regulation [57]; an example is depicted in Figure 1.7-

III, where one queries for a path that connects the Gs protein to the α-subunit only.

An unconstrained type (ii) query leads to a combinatorial explosion, which can

be contained by requiring that the user selects several classes and relationships

when composing the query, therewith keeping a degree of knowledge discovery;

e.g., to find the type (species) of a plant specimen and to refine a classification of

enzymes by adding properties. This type of query is not yet supported by stan-

dard DL and OWL reasoners, but some cues to implement this can be gleaned

from database reverse engineering, whose algorithms detect concepts, relations,

and mandatory and uniqueness constraints from the table definitions and data in

the tables. A variation on this theme is to consider also incomplete information

with rough sets, which has been shown to be useful in hypothesis testing [39].

For instance, it is known that some bacteria transfer more genes horizontally than

CONCLUSIONS AND OUTLOOK 21

others do (‘promiscuous bacteria’), but is it not clear what the characteristics are

and who has them. One may hypothesize that promiscuous bacteria have, say,

> 20% of their genes that are predicted to be horizontally acquired and have ≥ 5

clusters of horizontally transferred genes (see Figure 1.7-II): in CMcom, we have

att(PromiscuousBacterium) = {HGTpct : Real>20}, rel(hasClusters) = {org :

PromiscuousBacterium, geneclust : HGTCluster}, and the constraint card(Pro-

miscuousBacterium, HGTCluster, hasCluster) = 5..n. The data retrieved will be

a set of bacteria of which some have the same values for the chosen properties, yet

they are assumed to be distinct bacteria. Where possible, one can add new proper-

ties in successive steps to find the right combination of properties and thereby have

discovered the means to indeed distinguish the bacteria. Any potentially useful in-

termediate combinations of properties easily can be included in the conceptual data

model and be subjected to automated classification as was illustrated in Example 6.

1.5 CONCLUSIONS AND OUTLOOK

Ontology-driven formal conceptual data modeling brings rigor to database and soft-

ware development in the form of ontological guidance and use of ontologies to repre-

sent information more accurately, therewith resulting in a better quality conceptual

data model, hence, better software. The formal foundation ensures precision in rep-

resentation of the semantics of the subject domain and enables automated reasoning

over conceptual data models, which not only detects inconsistencies and derives im-

plicit information and thereby contributes to the quality of conceptual data models,

but also can be used in biological knowledge discovery processes. The latter include

services such as consistency checking, class and instance classification, and query-

ing. To substantiate these advantages, we presented a formal foundation for UML,

EER, and ORM, being CMcom, which has an equi-satisfiable DLRifd knowledge

base. Ontological guidance to motivate better modeling choices was illustrated with

a refinement for representing catalytic reactions. There are many language features

and extensions thereof. We demonstrated several claimed to be ‘non-representable’

biological knowledge actually can be represented in CMcom (hence, also in DLRifd),

such as constraints among relationships and that for other requirements language

extensions do exist that can give a formal semantics to, among others, temporal

knowledge. The latter was demonstrated with transforming entities and related

processes in a cascade of interactions of viral infection. Automated reasoning ser-

vices were illustrated for taxonomic classification, and three different query patterns

to find new type-level information were described.

Ontology-driven formal conceptual data modeling is still a relatively young field,

and many more usage scenarios are yet to be investigated fully, such as handling

incomplete information in hypothesis testing [39], how OntoClean [28] ideas can be

incorporated in conceptual data modeling methodologies, and developing a formal

link between ontologies and conceptual data models. Development of CASE tools

with both a unifying formalism—be this CMcom or another language—and an

integrated automated reasoner is necessary as well, not just with one language

interface [22] but with multiple graphical syntaxes. Temporal reasoning beyond

ERV T and its DLRUS foundation, principally either as extension to UML Class

22 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

Diagrams or as formalization of Sequence and Activity Diagrams, also may yield

useful results for biological knowledge discovery.

REFERENCES

1. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Rea-
soning over extended ER models. In ER-07, volume 4801 of LNCS, pages 277–292.
Springer, 2007.

2. A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A temporal description
logic for reasoning about conceptual schemas and queries. In S. Flesca, S. Greco,
N. Leone, and G. Ianni, editors, Proceedings of the 8th Joint European Conference
on Logics in Artificial Intelligence (JELIA-02), volume 2424 of LNAI, pages 98–110.
Springer Verlag, 2002.

3. A. Artale, N. Guarino, and C. M. Keet. Formalising temporal constraints on part-
whole relations. In G. Brewka and J. Lang, editors, 11th International Conference
on Principles of Knowledge Representation and Reasoning (KR’08), pages 673–683.
AAAI Press, 2008. Sydney, Australia, September 16-19, 2008.

4. A. Artale and C. M. Keet. Essential, mandatory, and shared parts in conceptual data
models. In T. Halpin, H. Proper, and J. Krogstie, editors, Innovations in Informa-
tion Systems modeling: Methods and Best Practices, Advances in Database Research
Series, pages 17–52. IGI Global, 2008.

5. A. Artale, C. Parent, and S. Spaccapietra. Evolving objects in temporal information
systems. Annals of Mathematics and Artificial Intelligence, 50(1-2):5–38, 2007.

6. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logics Handbook – Theory and Applications. Cambridge
University Press, 2 edition, 2008.

7. S. Bandini and A. Mosca. Mereological knowledge representation for the chemical for-
mulation. In 2nd Workshop on Formal Ontologies Meets Industry 2006 (FOMI2006),
pages 55–69, Trento, Italy, December 2006.

8. E. Beisswanger, S. Schulz, H. Stenzhorn, and U. Hahn. BioTop: An upper domain
ontology for the life sciences - a description of its current structure, contents, and
interfaces to OBO ontologies. Applied Ontology, 3(4):205–212, 2008.

9. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1-2):70–118, 2005.

10. BFO. Basic formal ontology, (last accessed August 2010). http://www.ifomis.org/bfo.

11. E. Bornberg-Bauer and N. Paton. Conceptual data modelling for bioinformatics.
Briefings in Bioinformatics, 3(2):166180, 2002.

12. D. Calvanese and G. De Giacomo. The DL Handbook: Theory, Implementation and
Applications, chapter Expressive description logics, pages 178–218. Cambridge Uni-
versity Press, 2003.

13. D. Calvanese, G. De Giacomo, and M. Lenzerini. Identification constraints and func-
tional dependencies in description logics. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001), pages 155–160, 2001.

14. D. Calvanese, G. D. Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodŕıguez-Muro,
and R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris
and E. Franconi, editors, Semantic Technologies for Informations Systems - 5th Int.

REFERENCES 23

Reasoning Web Summer School (RW 2009), volume 5689 of LNCS, pages 255–356.
Springer, 2009.

15. D. Calvanese, C. M. Keet, W. Nutt, M. Rodŕıguez-Muro, and G. Stefanoni. Web-
based graphical querying of databases through an ontology: the WONDER system.
In Proceedings of ACM Symposium on Applied Computing (ACM SAC’10), pages
1389–1396. ACM, 2010. March 22-26 2010, Sierre, Switzerland.

16. D. Calvanese, M. Lenzerini, and D. Nardi. Logics for Databases and Information Sys-
tems, chapter Description logics for conceptual data modeling. Kluwer, Amsterdam,
1998.

17. D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation for-
malisms. Journal of Artificial Intelligence Research, 11:199–240, 1999.

18. P. P. Chen. The entity-relationship model—toward a unified view of data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.

19. E. Demir et al. The BioPAX community standard for pathway data sharing. Nature
Biotechnology, 28(9):935–942, 2010.

20. H. El-Ghalayini, M. Odeh, R. McClatchey, and D. Arnold. Deriving conceptual data
models from domain ontologies for bioinformatics. In 2nd Conference on Information
and Communication Technologies (ICTTA’06), pages 3562 – 3567. IEEE Computer
Society, 2006.

21. R. Elmasri, F. Ji, and J. Fu. Modeling biomedical data. In J. Chen and E. Amandeep
S. Sidhu, editors, Biological database modeling, chapter 3. Artech House Publishers,
2007.

22. P. R. Fillottrani, E. Franconi, and S. Tessaris. The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web Journal, in print, 2011.

23. S. Garcia-Vallvé, E. Guzman, M. Montero, and A. Romeu. HGT-DB: a database
of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic
Acids Research, 31(1):187–189, 2003.

24. Gene Ontology Consortium. Gene Ontology: tool for the unification of biology. Na-
ture Genetics, 25:25–29, 2000.

25. N. Guarino. Formal ontology and information systems. In Proceedings of Formal
Ontology in Information Systems (FOIS’98). Amsterdam: IOS Press, 1998.

26. N. Guarino. The ontological level: Revisiting 30 years of knowledge representation.
In A. Borgida et al., editors, Mylopoulos Festschrift, volume 5600 of LNCS, pages
52–67. Springer, 2009.

27. N. Guarino and G. Guizzardi. In the defense of ontological foundations for conceptual
modeling. Scandinavian Journal of Information Systems, 18(1):(debate forum, 9p),
2006.

28. N. Guarino and C. Welty. An overview of OntoClean. In S. Staab and R. Studer,
editors, Handbook on ontologies, pages 151–159. Springer Verlag, 2004.

29. G. Guizzardi. Ontological Foundations for Structural Conceptual Models. Phd thesis,
University of Twente, The Netherlands. Telematica Instituut Fundamental Research
Series No. 15, 2005.

30. T. Halpin and T. Morgan. Information modeling and relational databases. Morgan
Kaufmann, 2nd edition, 2008.

31. H. Herre and B. Heller. Semantic foundations of medical information systems based
on top-level ontologies. Knowledge-Based Systems, 19:107–115, 2006.

24 ONTOLOGY-DRIVEN FORMAL CONCEPTUAL DATA MODELING FOR BIOLOGICAL DATA ANALYSIS

32. M. Jarrar, J. Demy, and R. Meersman. On using conceptual data modeling for ontol-
ogy engineering. Journal on Data Semantics: Special issue on Best papers from the
ER/ODBASE/COOPIS 2002 Conferences, 1(1):185–207, 2003.

33. T. Kazic. Putting semantics into the semantic web: How well can it capture biology?
Proc. of Pacific Symposium in Biocomputing, 11:140–151, 2006.

34. C. M. Keet. Biological data and conceptual modelling methods. Journal of Conceptual
Modeling, 29, October 2003. http://www.inconcept.com/jcm.

35. C. M. Keet. Part-whole relations in object-role models. In R. Meersman, Z. Tari,
P. Herrero., and et al., editors, 2nd International Workshop on Object-Role Modelling
(ORM 2006), OTM Workshops 2006, volume 4278 of LNCS, pages 1116–1127. Berlin:
Springer-Verlag, 2006. Montpellier, France, Nov 2-3, 2006.

36. C. M. Keet. A formal comparison of conceptual data modeling languages. In 13th
International Workshop on Exploring Modeling Methods in Systems Analysis and De-
sign (EMMSAD’08), volume 337 of CEUR-WS, pages 25–39, 2008. 16-17 June 2008,
Montpellier, France.

37. C. M. Keet. Constraints for representing transforming entities in bio-ontologies. In
R. Serra and R. Cucchiara, editors, 11th Congress of the Italian Association for Arti-
ficial Intelligence (AI*IA 2009), volume 5883 of LNAI, pages 11–20. Springer Verlag,
2009. Reggio Emilia, Italy, Dec. 9-12, 2009.

38. C. M. Keet. Mapping the Object-Role Modeling language ORM2 into Description
Logic language DLRifd. Technical Report arXiv:cs.LO/0702089v2, KRDB Research
Centre, Free University of Bozen-Bolzano, Italy, April 2009. arXiv:cs.LO/0702089v2.

39. C. M. Keet. Ontology engineering with rough concepts and instances. In P. Cimiano
and H. Pinto, editors, 17th International Conference on Knowledge Engineering and
Knowledge Management (EKAW’10), volume 6317 of LNCS, pages 507–517. Springer,
2010. 11-15 October 2010, Lisbon, Portugal.

40. C. M. Keet. Enhancing identification mechanisms in UML class diagrams with mean-
ingful keys. In Proceeding of the SAICSIT Annual Research Conference 2011 (SAIC-
SIT’11), pages 283–286. ACM Conference Proceedings, 2011. Cape Town, South
Africa, October 3-5, 2011.

41. C. M. Keet and A. Artale. Representing and reasoning over a taxonomy of part-whole
relations. Applied Ontology – Special issue on Ontological Foundations for Conceptual
Modeling, 3(1-2):91–110, 2008.

42. C. M. Keet and A. Artale. A basic characterization of relation migration. In R. Meers-
man et al., editors, OTM Workshops, 6th International Workshop on Fact-Oriented
Modeling (ORM’10), volume 6428 of LNCS, pages 484–493. Springer, 2010. October
27-29, 2010, Hersonissou, Crete, Greece.

43. C. M. Keet, M. Roos, and M. S. Marshall. A survey of requirements for automated
reasoning services for bio-ontologies in OWL. In Proceedings of the 3rd Workshop on
OWL: Experiences and Directions (OWLED 2007), volume 258 of CEUR-WS, 2007.
6-7 June 2007, Innsbruck, Austria.

44. KEGG. Kyoto Encyclopedia of Genes and Genomes. http://www.genome.jp/kegg/.

45. T. Lukasiewicz and U. Straccia. Managing uncertainty and vagueness in description
logics for the semantic web. Journal of Web Semantics, 6(4):291–308, 2008.

46. C. Lutz, D. Toman, and F. Wolter. Conjunctive query answering in the description
logic EL using a relational database system. In Proceedings of the 21st International
Joint Conference on Artificial Intelligence IJCAI’09. AAAI Press, 2009.

REFERENCES 25

47. Z. Ma, F. Zhang, L. Yan, and J. Cheng. Representing and reasoning on fuzzy UML
models: A description logic approach. Expert Systems with Applications, 38(3):2536–
2549, 2011.

48. J. S. Madin, S. Bowers, M. P. Schildhauer, and M. B. Jones. Advancing ecological
research with ontologies. Trends in Ecology & Evolution, 23(3):159–168, 2008.

49. C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Ontology library.
WonderWeb Deliverable D18 (ver. 1.0)., 2003. http://wonderweb.semanticweb.org.

50. B. Motik, P. F. Patel-Schneider, and B. Parsia. OWL 2 web ontology language struc-
tural specification and functional-style syntax. W3c recommendation, W3C, 27 Oct.
2009. http://www.w3.org/TR/owl2-syntax/.

51. D. A. Natale et al. The Protein Ontology: a structured representation of protein
forms and complexes. Nucleic Acids Research, 39(Database issue):D539–D545, 2011.

52. Object Management Group. Superstructure specification. Standard 2.3, Object Man-
agement Group, May 2010. http://www.omg.org/spec/UML/2.3/.

53. C. Parent, S. Spaccapietra, and E. Zimányi. Conceptual modeling for traditional
and spatio-temporal applications—the MADS approach. Berlin Heidelberg: Springer
Verlag, 2006.

54. O. Pastor, A. M. Levin, J. C. Casamayor, M. Celma, L. E. Eraso, M. J. Villanueva,
and M. Perez-Alonso. Enforcing conceptual modeling to improve the understanding
of human genome. In Fourth International Conference on Research Challenges in
Information Science (RCIS’10), pages 85–92. IEEE Computer Society, 2010. Nice,
France, 19-21 May 2010.

55. A. Queralt and E. Teniente. Reasoning on UML class diagrams with OCL constraints.
In D. Embley, A. Olivé, and S. Ram, editors, Proceedings of ER’06, volume 4215 of
LNCS, pages 497–512. Springer-Verlag, 2006.

56. A. Queralt and E. Teniente. Decidable reasoning in UML schemas with constraints.
In Z. Bellahsene and M. Léonard, editors, CAiSE, volume 5074 of Lecture Notes in
Computer Science, pages 281–295. Springer, 2008.

57. M. Roos, H. Rauwerda, M. Marshall, L. Post, M. Inda, C. Henkel, and T. Breit.
Towards a virtual laboratory for integrative bioinformatics research. In C. M. Keet
and E. Franconi, editors, CSBio Reader: Extended abstracts of CS & IT with/for
Biology Seminar Series 2005, pages 18–25. Free University of Bozen-Bolzano, 2005.

58. D. Shegogue and W. J. Zheng. Object-oriented biological system integration: a SARS
coronavirus example. Bioinformatics, 21(10):2502–2509, 2005.

59. B. Smith, M. Ashburner, C. Rosse, J. Bard, W. Bug, W. Ceusters, L. Goldberg,
K. Eilbeck, A. Ireland, C. Mungall, T. OBI Consortium, N. Leontis, A. Rocca-Serra,
A. Ruttenberg, S.-A. Sansone, M. Shah, P. Whetzel, and S. Lewis. The OBO Foundry:
Coordinated evolution of ontologies to support biomedical data integration. Nature
Biotechnology, 25(11):1251–1255, 2007.

60. B. Smith, W. Ceusters, B. Klagges, J. Köhler, A. Kumar, J. Lomax, C. Mungall,
F. Neuhaus, A. L. Rector, and C. Rosse. Relations in biomedical ontologies. Genome
Biology, 6:R46, 2005.

61. V. Sugumaran and V. C. Storey. The role of domain ontologies in database design:
An ontology management and conceptual modeling environment. ACM Transactions
on Database Systems, 31(3):1064–1094, 2006.

62. The UniProt Consortium. Ongoing and future developments at the universal protein
resource. Nucleic Acids Res., 39:D214–D219, 2011.

63. K. Wolstencroft, R. Stevens, and V. Haarslev. Applying OWL reasoning to genomic
data. In C. Baker and H. Cheung, editors, Semantic Web: revolutionizing knowledge
discovery in the life sciences, pages 225–248. Springer: New York, 2007.

