Enhancing comprehension of ontologies and
conceptual models through abstractions

C. Maria Keet

Faculty of Computer Science, Free University of Bozen-Bolzano, Italy
keet@inf.unibz.it

Abstract. In addition to the Database Comprehension Problem, where
diagrammatic conceptual data models are too large for a modeller or
domain expert to comprehend or manage, an Ontology Comprehension
Problem is emerging. Formal ontologies are, however, more amenable to
automated abstractions to improve understandability. Three ways of ab-
straction are defined with 11 abstraction functions that use foundational
ontology categories. Usability of the abstraction functions is enhanced by
associating the functions with a basic framework of levels and abstraction
hierarchy, thereby facilitating querying and visualizing ontologies.

1 Introduction

Information systems are rapidly increasing in size and complexity. This is caused
by, among others, database integration through global schemas (integrated con-
ceptual models) or large ontologies, such as [23-25], resulting from company
mergers or the desire to link scientific databases on the Internet. Moreover,
within the scope of the Semantic Web, large formal ontologies are being devel-
oped mainly by domain experts who often have not had any training in logics and
therefore rely on more convenient GUIs as interface to the logical theories, such as
the diagrammatic renderings with OntoViz and GrOWL. While this makes ontol-
ogy development more accessible to domain experts, it has the major drawbacks
that large diagrammatic logical theories do not fit onto one computer screen or
printable figure and the GUIs are poor in ontology browsing and querying op-
tions, thereby making the full contents of the ontology di cult to comprehend;
hence, in addition to the Database Comprehension Problem [2, 8,9, 19], there is
an analogous Ontology Comprehension Problem. Compared to most conceptual
data models, ontologies have at runtime a formal underpinning integrated with
it, which therefore makes it easier to develop solutions for managing user in-
teraction with those ontologies. An obvious solution is to avail of abstractions
as mechanism to go from finer to coarser-grained information to avoid detailed
representations that are not of interest for the user who chooses to ignore unde-
sired aspects whilst maintaining both levels of detail in the background in the
system (see also [20] and references therein). Extant proposals for abstractions
di er along three dimensions: language to which it is applied, methodology, and
semantics of what one does when abstracting. Concerning the latter, we identify

three distinct ways of performing abstraction, which propagates to the types of
abstraction functions needed to manage ontologies and conceptual data models.
In addition, we use foundational ontological categories to type the functions,
thereby facilitating consistent implementation and reusability. Third, we intro-
duce more precisely the notion of abstraction level and abstraction hierarchy as
an additional framework, which eases computation in particular regarding query-
ing that can be executed as pre-processing step for visualisation of sections of
ontologies. Section 2 contains a summary of extant approaches of abstraction
and section 3 contains the main solutions we propose. We conclude in §4.

2 Related works

A range of approaches to abstractions are described by [2,5,9, 19]. The earlier
works on theories of abstraction di er along three dimensions—language, axioms,
and rules—and, as summarised by [5], concern topics such as abstraction for
planning, reduction of search, and logical theories; we are interested in the latter.
[2,9, 19] provide overviews that focus on abstractions for conceptual models and
ontologies, which are logical theories that have essential graphical ‘syntactic
sugar’ for improved usability from the perspective of the domain expert. We
illustrate main issues with extant approaches.

Manual abstraction is used for UML modularisation, EER clustering and ‘ab-
straction hierarchies’, e.g., [8, 13, 19, 21, 27], that have the drawbacks that it is a
laborious, intuitive, not scalable, and ad hoc method. Concerning methodology
for abstractions, [2] introduced heuristics to simplify large ORM conceptual mod-
els, but they are tailored to ORM only and thus not directly applicable to other
knowledge representation languages [9]. Limited syntax-focused formalisation of
abstraction using Local Model Semantics of context reasoning is proposed by
[4], which address taxonomic generalisation (subsumption), which concurs with
[3,22,16]. This, however, ignores a crucial aspect of collapsing sub-processes
into a grander process and overloads their abs function, thereby in itself ab-
stracting away the finer details of the process of abstraction. Syntax abstraction
augmented with semantics was investigated by [14, 16], extending [6, 7]. [14] ad-
dresses the important notion of “folding” formally: e.g., for a biology domain, the
catalytic reactions and proteins involved in the Second messenger system collapse
into that one entity type, and Cell contains (modular) subsystems (e.g., [18]).
The approaches can be structured according to topic and implementation foci
and the nature of the abstraction operations (see [9]). These solutions exhibit
three main problems: abstraction focuses only on the contents of a level, thereby
lacking a surrounding framework; a general abstraction function abs does nei-
ther reveal what it is abstracting nor how; extant proposed solutions are mainly
theoretical and not developed for or assessed on its potential for reusability and
scalability. In the next section, we introduce a basic framework, three types of
abstraction, and abstraction functions for both basic and complex folding oper-
ations, respectively, so that abstractions become scalable, are unambiguous to
implement, and amenable to automation.

3 Abstractions

The various abstractions have di erent purposes at the conceptual level, re-
gardless implementation issues. What is abstracted away depends on multiple
factors; we focus on the type of abstraction, the procedure of (consecutive steps
of) abstraction, and on what type of representation/model the abstraction is
performed. The types are depicted in Fig.1, and they are defined as follows.

Definition 1 (R-abs) An abstraction is an R-abs i the more-detailed type @
abstracts into its related parent type (.

Definition 2 (F-abs) An abstraction is a F-abs i a more-detailed theory Tg
(with @;...0n entity types, relations, and constraints among them) abstracts into
a single related parent type in T, that is distinct from any @;.

Definition 3 (D-abs) An abstraction is a D-abs i a more-detailed theory Tg
with @;...0n entity types, relations, and constraints abstracts into theory T; with
¢,..-0y, entity types, relations, and constraints, and m < n through deletion of
elements either from Ty to obtain T, or from Tg’s user interface.

Fig. 1. Three conceptually distinct kinds of abstraction operations. R-abs: the relation
is remodelled as a function; F-abs: folding multiple entities and relations into a di erent
type of entity; D-abs: hiding or deleting semantically less relevant entities and relations.

[4,5,7,9,16] mention ‘levels’ of abstraction, depicted in Fig.1 with the ovals, but
to the best of our knowledge, the notion of level has not been specified and used
specifically for abstractions. To be able to manage better both the abstraction
functions and complex base- & simple theory resulting from an abstraction, we
define an abstraction level as follows.

Definition 4 (Abstraction level) Given a base theory Ty and a simpler the-
ory Ty into which Tg is abstracted, an abstraction level, denoted with A;, is the
surrounding frame that contains T;, which form a tuple A, T , where A; A
and T; T, and)\0 A1

Observe that for any logical theory T; (i.e., ontology or conceptual data model),
obviously the individual entity types, relations, and constraints are in T;’s level
of abstraction A; and considered to be accessible for abstraction individually as

well. To put levels to use, we need a function to retrieve the level where a theory
or its entity types reside, labs : T — A, which is analogous to such functions for
granularity [11]; e.g., labs(T1) = Ay (with Ay A), which thus also holds for any
type in T, (if @1 T1 then labs(@1) = A;). Last, to improve abstraction func-
tions as introduced in [4, 14] and make a significant step toward their usability
for ontologies, we will avail of several ontological categories from DOLCE foun-
dational ontology [15]. DOLCE has an OWL version—the ontology language for
the Semantic Web—, is comprehensive and used across subject domains (see
for an overview: http://www.loa-cnr.it/DOLCE.html). In particular, we will use
DOLCE’s endurant ED for entity types (OWL classes), perdurant PD, and PT
for particular as top-type that subsumes any other type (owl:Thing in OWL).
With these preliminaries, we can proceed to the abstraction functions.

3.1 Basic and compound abstraction functions

The basic abstractions for R-abs, (1-5), are listed in Table 1. They are straight-
forward relation-turned-into-function along a hierarchy in the formal ontology or
conceptual data model, with the two distinctions that functions (1-5) are typed
with ontological categories and have additional constraints to relate the entity
types to their abstraction level. The functions conform to the main relations in
the OBO Relation Ontology for bio-ontologies and the latest results on types of
part-whole relations [10, 17]. Note that abstraction for spatial containment (4)
refers to both the type and region it occupies [10], and an addiitonal abstraction
function for proper parthood may be useful for bio-ontologies; that is, an absppo:
PT - PT where absppo(¢) = g, ppart_of (o,), labs(p) = A;, labs(p) = Aj,
and A; A;j hold. The basic functions are trivially extensible for other ontolog-
ical categories and recurring relations in domain ontologies even if one were to
use a di erent foundational ontology, which can be of use in an implementation.
Considering DOLCE foundational ontology [15], several examples are given to
illustrate some of the possibilities to refine the abs functions further.
Example. i) Refinement of abs with EDs: Abstract non-agentive physical ob-
jects (NAP Q) or amounts of matter (M) into amounts of matter (M), using
(sub-)quantities; e.g., Air and its M-part Oxygen or its NAP O-parts the types
of molecule such as O, and CO,. Abstracting social agents (SAGS) like citizens
into society (SC), locusts into swarm, and so forth for entities denoted with col-
lective nouns and their members. ii) Refinement with P Ds: Mapping processes
(PRO) into one event (EV), e.g., Running into Marathon. ¢

The last basic operation, absg;, covers one of the two functions for D-abs, where
some type is deleted, which is primarily applicable to conceptual data models;
thus, @ To, @ /7 Ty, with labs(Tg) = Ao, labs(T1) = A1, Ao Az, and Tp To.
Note that when an attribute that is the su cient condition of ¢ is removed, then
the deletion implies @ ¢, hence a taxonomic abstraction (absjsa).

With these basic abstraction functions, we have covered the most widely used
relations to construct hierarchies in ‘simple’ formal ontologies. Compound ab-
stractions are required to manage comprehension and visualisation of complex
formal ontologies and to enable abstractions for formal conceptual data models.

Table 1. List of basic and compound abstraction functions.

| Abstraction Constraints; comment |
(1) absisa:PT - PT absisa(@) =W, @ W, labs(9) = Ai, labs() = A;,
Ai Aj; sub-supertype (class) abstraction
(2) abspo:PT - PT as (1), but part_of (@, @); part into its whole
(3) absin:PD - PD as in (1), but involved_in(o, Y):
Abstract a part-process into the whole-process
(4) absci:ED - ED as in (1), but contained_in(@, Y); Abstract a smaller
contained type into larger type
(5) abspi:ED - PD as in (1), but participates_in(@, Q);
Abstract an endurant into a perdurant
(6) absq1:PT - labs(@) = Ai, Ai A;j; Abstract a type into

‘nothing’, deleting it from the theory

(7) abspy : ED <ED - ED abspi(@,) = ¢, where labs(p) = Ai, labs(y) = A,
labs(d) = }\j, and A;)\j
Abstract two endurants into another endurant

(8) absy, :PDxPD - PD asin (7); Abstract two perdurants into a perdurant

(9) absps:EDxPD - ED asin (7); Abstract an endurant and a perdurant
into an endurant

(10) absps : ED xPD — PD as in (7); Abstract an endurant and a perdurant
into a perdurant

(11) absq; : ED xQ - ED as in (7), but A\i A;, @ = ¢; Remove an attribute

The compound abstractions address F-abs and D-abs, folding two entities or
types in A; into a simpler entity or type in A; where A; A;. They are sum-
marised in Table 1, (7-11). absp1 (9, P) = ¢, has, e.g., Blood cell (a NAP O) and
Plasma (an M) as direct parts of Blood (an M). One could add more specific
functions that satisfy (8), such as an abs,,: PRO x ST - EV for abstracting
Running and Being thirsty into Marathon. For F-abs, we have (9) that combines
perdurants and endurants into ‘systems’ that are endurants, such as Second mes-
senger system that is composed of enzymes and catalysis processes, and (10) has
its analogue with EER clustering and abstractions [8, 19]; for example Orders
in the fact type “Customer Orders Book”, where the ordering process involves,
a.o0., Billing, Paying, Supplier, and Shipment. Both functions require a constraint,
being that the input types have to be related to each other, ensuring that no two
arbitrary types are folded, but ones that are related so that a connected subset
of T; is folded into a type in Tj, i.e., upon firing abspz or absps = 1 times for
elements in T;, where T; T;j, then T; is abstracted into ¢ where ¢ Tj.

Constraint 1 (folding) For each ¢, { where abs,3(@,) = ¢ or absps(@, P) =
¢, labs(d) = A;, there must be either i) a predicate p such that p(p,) T; that
is contained in Aj or ii) =ED, gy =p and x(ED(X) - y(p (x,y))) in T;.

Here, as with deletion (absq:), compositionality of the theory is important, which
is a desirable feature from a computational viewpoint [5, 16]; from the perspec-
tive of a domain expert it is debatable, because some details in the logical the-
ory really may be undesirable to develop tractable systems biology simulations

and making ontologies usable for ontology-guided applications [18, 24, 25]. For
f-abs this can be e ectively managed with the current abstraction functions
in conjunction with the levels. ¢ in Tj (in A;) is not a ‘new’ entity, but can be
represented as element in the encompassing theory T for the whole system that
is the union of Tg, ..., Tn; hence, soundness and completeness can be preserved.

With the last main abstraction function, absg,, we address the remainder of
D-abs. Suppressing details from the interface to a logical theory can already be
done through toggle features, which lets the user select displaying more or less re-
lations, attributes, and so forth, like with the OntoViz plugin [26] for the Protégé
ontology development tool. This can be formally defined with absg, (@, U), where
attribute ¢ (a quality Q in DOLCE) folds away. But for (11), because nothing
changes to the underlying theory, we have labs(¢) = Aj, ¢ = ¢ and T; = T;
and Aj A;j. More functions can be defined for the other to-be-hidden elements
analogous to absg,. A software developer may want to label the abstraction not
¢ but @ as approximation for ¢, thereby communicating to the user that incom-
plete information is shown in the GUI and that further exploration (up to the
base theory T;) is possible. This simple hiding breaks down with theories of over
about 100 entity types, and may need to be augmented with a generalisation [9]
of Campbell et al.’s [2] rules and their weights; a.0., hiding based on prioritization
where, e.g., existential quantification takes precedence over all other constraints,
and identification is more important than a non-key attribute. Thus, for a large
diagram—with logical theory in the background—one can find out what the im-
portant elements are. Reformulation of the rules, which are written by [2] as “if
¢ then keep it” instead of “if ¢ then abstract it away”, is feasible; e.g., “Rule
3: [keep] non-leaf object types” can be rewritten for parthood relations, where
—(part_of = R), as “Rule 3 : if part_.of(p,§) -R(@,P), then abspe(@) = Y.”;
hence, the functions proposed here are compatible with [2,9] and are applicable
also to other conceptual modelling languages and ontologies.

3.2 Abstraction hierarchy

By using abstraction functions (1-11) and Definition 1 for abstraction level, one
can create abstraction hierarchies. We define an abstraction hierarchy as follows.

Definition 5 (Abstraction hierarchy) Let T be set of theories, F denote a
set of abstraction functions, and A the set of levels obtained from using abs;

F on a theory Tg T, then an abstraction hierarchy H H is the ordered
sequence of levels Ag, ...,An A, with n > 1, obtained from firing abs; = 1 times
successively on Tg, Ty, ..., Th—1 such that Ag A1...An—1 Ay and labs(Ty) =
Ao...labs(Tn) = A hold.

For purposes of understandability on what the system does as well as ease of
implementation, we have restricted the abstraction hierarchy to one that is ob-
tained by firing only one type of abstraction function to create each hierarchy.
This definition di ers with the k-level abstraction hierarchy from Knoblock et al.
[12], because they di er in both the scope and usage of abstraction: planning vs.
improving comprehensibility of large formal ontologies and conceptual models.

3.3 Toward implementation

Foundational aspects of abstraction generally su er from the trade-o to make a
workable implementation: theory is there to guide implementation but for various
reasons, such as computational complexity, usability, and relative importance,
is not always strictly adhered to. The basic abstraction functions for R-abs,
however, have straightforward mappings to recursive queries with an additional
clause for the ontological category or type of relation. This is supported in,
e.g., ontology query languages such as XQuery and nRQL and database query
languages SQL and StruQL for ontologies that are stored in a database like the
FMA and GO [24, 25]. The compound abstraction functions require engineering
work in CASE tools in addition to the recent results by [19, 27]. Regarding F-abs
abstractions and any combination thereof for stepwise more elaborate folding,
they are useful for, e.g., coordinated UML-like modularisation and the ‘black
box’ software modules in biology and ecology [27, 18]. Provided one uses a formal
version of UML (e.g., [1]), one can marry the functions with the UML-as-logical-
theory, yet have user-friendly interfaces like provided with CASE tools such as
Rational Rose. Such CASE tools also have UML packages, which can be reused
as diagrammatic support for abstraction levels and the hierarchies constructed
with them. With the indexing of abstraction levels, one can keep track of what
is abstracted into what more easily, and let a user select (query), say, 3 levels
more abstract in one go instead of step-wise clicking in the GUI. For instance,
from Hepatic Macrophage (a type of cell) in A; at once to the organ it is part
of in Az (which is the Liver), although behind the scene this involves recursively
going up the abstraction hierarchy with firing absp, 3 times.

4 Conclusions

Three conceptually distinct ways of abstraction were identified, consisting of
remodelling a relation between finer- and coarser-grained entities as a function
(R-abs), folding multiple entities and relations into a di erent type of entity (F-
abs), and hiding or deleting less relevant entities and relations (D-abs). Six basic
and five complex abstraction functions were introduced, which use foundational
ontological types for unambiguous specification and are easily extensible. Ab-
straction level and abstraction hierarchy were defined, thereby providing a means
for consist use of the functions and quick cross-level navigation in applications.
By having the abstraction functions at the conceptual level and their correspond-
ing formalisation, it simplifies understanding, provides space for extensions with
more abstraction functions, and makes them usable and reusable across imple-
mentations of formal ontologies and conceptual data models. Thereby abstrac-
tion is scalable and straightforward to implement as queries over the ontology
or conceptual data model or methods in software applications. We are currently
investigation in more detail the interplay between abstraction and granularity.

References

1. Berardi, D., Calvanese, D., De Giacomo, G. Reasoning on UML class diagrams. Al
(2005) 168(1-2): 70-118.

2. Campbell, L.J., Halpin, T.A., Proper, H.A.: Conceptual Schemas with Abstractions:
Making flat conceptual schemas more comprehensible. DKE (1996) 20(1): 39-85.

3. Degtyarenko, K., Contrino, S.: COMe: the ontology of bioinorganic proteins. BMC
Structural Biology (2004) 4:3.

4. Ghidini, C., Giunchiglia, F.: A semantics for abstraction. TR DIT-03-082, University
of Trento, Italy. 2003.

5. Giunchiglia, F., Villafiorita, A., Walsh, T.: Theories of abstraction. Al Communi-
cations (1997) 10(3-4): 167-176.

6. Giunchiglia, F., Walsh, T.: A theory of abstraction. Al (1992) 57(2-3):323-389.

7. Hobbs, J.R.: Granularity. In: Proc. of IJCAI85, 1985, 432-435.

8. Jaeschke, P., Oberweis, A., Stucky, W.: Extending ER Model Clustering by rela-
tionship clustering. In Proc. of ER’93. Arlington, Texas (1993).

9. Keet, C.M.: Using abstractions to facilitate management of large ORM models and
ontologies. In Proc. of ORM’05. LNCS 3762: 603-612.

10. Keet, C.M.: Part-whole relations in Object-Role Models. In Proc. of ORM’06.
LNCS 4278: 1116-1127.

11. Keet, C.M.: A taxonomy of types of granularity. IEEE Conference on Granular
Computing (GrC2006), Atlanta, USA. IEEE Xplore (2006) 1: 106-111.

12. Knoblock, C.A., Tenenberg, J., Yang, Q.: Characterizing abstraction hierarchies
for planning, in: Proc. of AAAI '91, AAAI Press (1991): 692-697.

13. Lind, M.: Making sense of the abstraction hierarchy. Cognitive Science Approaches
to Process Control (CSAPC99), Villeneuve d’Ascq, France 21-24 September (1999).

14. Mani, I.: A theory of granularity and its application to problems of polysemy and
underspecification of meaning. In: Proc. of KR’98, 245-255.

15. Masolo, C., Borgo, S., Gangemi, A., Guarino, N. and Oltramari, A.: Ontology
Library. WonderWeb Deliverable D18, v1.0, 31-12-2003.

16. Pandurang Nayak, P., Levy, A.Y.: A semantic theory of abstractions. In: Proc. of
IJCAI'95. San Mateo: Morgan Kaufmann (1995) 196-203.

17. Smith, B., Ceusters, W., Klagges, B., Kohler, J., Kumar, A., Lomax, J., et al.:
Relations in biomedical ontologies. Genome Biology (2005) 6:R46.

18. Sontag, E.D.: Some new directions in control theory inspired by systems biology.
Systems biology (2004) 1(1): 9-18.

19. Tavana, M., Joglekar, P., Redmond, M.A.: An automated entity-relationship clus-
tering algorithm for conceptual database design. Information Systems (2007), EPub
ahead of print: 4-8-2006.

20. Tzitzikas, Y., Hainaut, J-L. On the visualization of large-sized ontologies. In: Proc.
of AVI2006, 99-102.

21. Yu, X, Lau, E., Vicente, K.J., Carter, M.W.: Toward theory-driven, quantita-
tive performance measurement in ergonomics science: the abstraction hierarchy as
a framework for data analysis. Th. Issues in Ergonomics Sci. (2002) 3(2): 124-142.

22. Zhang, J., Silvescu, A., Honavar, V.: Ontology-Driven Induction of Decision Trees
at Multiple Levels of Abstraction. TR ISU-CS-TR 02-13, lowa State University. 2002.

23. Cell Cycle Ontology. http://www.cellcycleontology.org.

24. Foundational Model of Anatomy. http://fme.biostr.washington.edu:8089/
FME/index.html; FMA-lite. http://obo.sourceforge.net/cgi-bin/detail.cgi?fma_lite.

25. Gene Ontology & GO-slim. http://www.geneontology.org/GO.slims.shtml.

26. OntoViz. http://protege.cim3.net/cgi-bin/wiki.pl?0OntoViz.

27. SemTalk, Semtation. http://www.semtalk.com.

