
Ontology verbalisation hands-on exercise @ JOWO 2022

Zola Mahlaza

The main objective of this exercise is to introduce participants to the task of generating
natural language text from an ontology. Participants will be tasked with designing templates
for generating English, German, and isiZulu1 text. The three languages have been chosen
chosen in order to expose participants to challenges, or lack thereof, that may be due to the
complexity of each output language’s grammar.

To complete this exercise, participants must form groups of 2-4 people, if possible.

1 Exercise outcomes

Participants are expected to possess the ability to execute the following tasks after completing
the hands-on exercise:

� Design an English template to verbalise an OWL axiom

� Aggregate multiple English sentences to improve paragraph readability

� Ideate on how to obtain lexical resources for classes in an ontology

� Design a German template to verbalise an OWL axiom

� Design an isiZulu template to verbalise an OWL axiom

2 Optional software dependencies

There are optional programming tasks that require a number of dependencies. Should each
team wish to also attempt the programming tasks then there must be at least one team
member who has an IDE installed and who has some knowledge of the following:

� Java 11 (or later)

� OWLAPI (https://github.com/owlcs/owlapi)

Knowledge of the OWLAPI is not strictly necessary as most of the OWLAPI-related
functionality has been implemented. However, such knowledge may assist when debugging
the code. The only dependency that is absolutely necessary in order to be able to do the
optional programming tasks is Java.

1The most prevalent South African language by L1 speakers. https://en.wikipedia.org/wiki/Zulu_
language

1

https://github.com/owlcs/owlapi
https://en.wikipedia.org/wiki/Zulu_language
https://en.wikipedia.org/wiki/Zulu_language

3 Generating English text

The first batch of tasks focuses on designing templates for verbalising an ontology in English.
Specifically, we will focus on a subset of the OntoVerbal verbaliser [3, 4, 2].

The OntoVerbal(-M) verbaliser was created by Liang et al. [3, 4, 2] for generating English
and Mandarin. It was intended to be used as an assistive tool by individuals who want
to audit the contents of ontologies but have no expertise in either ontologies or ontology
languages.

Consider the following axioms, given in functional syntax, pertaining to the Valve class
taken from Liang et al. [4]:

� DisjointClasses(AnatomicalCavity Valve)

� SubClassOf(TricuspidValve Valve)

� SubClassOf(PartialValve Valve)

� SubClassOf(Valve AnatomicalConcept)

� SubClassOf(SemiLunarValve Valve)

� SubClassOf(VestigialCardiacValve Valve)

� SubClassOf(MitralValve Valve)

� EquivalentTo(AtrioVentricularValve ObjectUnionOf(Valve ObjectSomeValues-

From(hasValveInput AtriumCavity) ObjectSomeValuesFrom(hasValveOutput Ven-

tricularCavity)))

The verbaliser has the ability to take these axioms and transform them to produce the
following text, as shown by Liang et al. [4]:

A valve is a kind of anatomical concept. More specialised

kinds of valve are mitral valve, partial valve, semi lunar valve,

tricuspid valve and vestigial cardiac valve. Also, a valve is

different from an anatomical cavity. Another relevant aspect

of a valve is that an atrio ventricular valve is defined as a valve

that has valve input an atrium cavity and has valve output a

ventricular cavity.

While the original OntoVerbal has the capacity to verbalise a variety of axioms, we limit
ourselves to the verbalisation of “simple axioms” [3, pg340] for this tutorial. We say that
an axiom is simple in the context of OntoVerbal if it is one of the following A ⊑ B, A ≡ B,
A ⊑ ¬B, and a ∈ A where A and B are atomic classes.

To demonstrate the capability, and limitations, of the exercise version of the OntoVerbal
verbaliser, let us look at the output it produces when it is given the axioms pertaining to
the VegetarianTopping class from the pizza tutorial ontology2:

2https://protege.stanford.edu/ontologies/pizza/pizza.owl

2

https://protege.stanford.edu/ontologies/pizza/pizza.owl

A(n) VegetarianTopping is a kind of DomainConcept, Thing, Food, and PizzaTop-

ping. More specialised kinds of VegetarianTopping are CaperTopping, Vegetable-

Topping, CheeseyVegetableTopping, TomatoTopping, SlicedTomatoTopping, Parmesan-

Topping, RocketTopping, RosemaryTopping, ArtichokeTopping, GorgonzolaTopping,

TobascoPepperSauce, LeekTopping, FruitTopping, CajunSpiceTopping, NutTopping,

CheeseTopping, MushroomTopping, PeperonataTopping, MozzarellaTopping, SweetPep-

perTopping, RedOnionTopping, GarlicTopping, SultanaTopping, OliveTopping, Ice-

Cream, OnionTopping, AsparagusTopping, PetitPoisTopping, SauceTopping, HerbSpice-

Topping, PepperTopping, JalapenoPepperTopping, SundriedTomatoTopping, GoatsCheese-

Topping, SpinachTopping, FourCheesesTopping, GreenPepperTopping, HotGreenPep-

perTopping, and PineKernels. A(n) VegetarianTopping is defined as VegetarianTop-

ping. In addition, a(n) VegetarianTopping is different from a(n) CheeseyVeg-

etableTopping, a(n) Spiciness, a(n) PizzaBase, a(n) ParmaHamTopping, a(n) Rosa,

a(n) QuattroFormaggi, a(n) PrawnsTopping, a(n) PrinceCarlo, a(n) ThinAndCrispyP-

izza, a(n) MeatTopping, a(n) AnchoviesTopping, a(n) MixedSeafoodTopping, a(n)

Napoletana, a(n) HotSpicedBeefTopping, a(n) Mushroom, a(n) SloppyGiuseppe, a(n)

AmericanHot, a(n) MeatyPizza, a(n) HamTopping, a(n) Fiorentina, a(n) Caprina,

a(n) Pizza, a(n) DeepPanBase, a(n) NonVegetarianPizza, a(n) InterestingPizza,

a(n) UnclosedPizza, a(n) SpicyPizza, a(n) ThinAndCrispyBase, a(n) Mild, a(n) Par-

mense, a(n) FishTopping, a(n) Capricciosa, a(n) Cajun, a(n) PeperoniSausageTop-

ping, a(n) Margherita, a(n) Giardiniera, a(n) FruttiDiMare, a(n) LaReine, a(n)

Soho, a(n) IceCream, a(n) CheeseyPizza, a(n) Hot, a(n) ChickenTopping, a(n) Named-

Pizza, a(n) SpicyPizzaEquivalent, a(n) FourSeasons, a(n) VegetarianPizza, a(n)

Medium, a(n) PolloAdAstra, a(n) American, a(n) VegetarianPizzaEquivalent2, a(n)

VegetarianPizzaEquivalent1, a(n) Siciliana, a(n) Veneziana, and RealItalianPizza.

Additional output examples can be found at https://people.cs.uct.ac.za/~zmahlaza/
jowo2022/en/ontoverbaloutput.html. You are free to download the jar file with the exer-
cise version of the verbaliser at https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/
ontoverbalforrunning.zip and run it with you preferred ontology or the ones listed at
http://www.meteck.org/MoReNL/JOWO22tutorialOntologies/.

3.1 Tasks

For purposes of improving the verbaliser, you will design your own templates and implement
them in Java. The implementation of the templates in Java is optional and those interested
in completing the Java verbaliser should download the skeleton source code from https:

//people.cs.uct.ac.za/~zmahlaza/jowo2022/en/verbalisercode.zip.

1. For each of the following axiom type A ⊑ B, A ≡ B, A ⊑ ¬B, and a ∈ A where A
and B are atomic classes, execute the following tasks:

(a) Design a template for presenting the axiom in English. Use a piece of paper
to explore the various possibilities and write down example sentences they can
produce.

3

https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/ontoverbaloutput.html
https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/ontoverbaloutput.html
https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/ontoverbalforrunning.zip
https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/ontoverbalforrunning.zip
http://www.meteck.org/MoReNL/JOWO22tutorialOntologies/
https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/verbalisercode.zip
https://people.cs.uct.ac.za/~zmahlaza/jowo2022/en/verbalisercode.zip

(b) Create a declarative form of your template in a text file. For instance, if you use
Mustache syntax3 then you can represent slots as {{slotName}} while all other
text is fixed. The example template Hello {{participantName}} that uses Mus-
tache syntax can be used to generate texts of the form Hello Aubrey, Hello
Adam, etc. where Aubrey and Adam are possible participant names. Alternatively,
try to use the proposed syntax for the template language for Abstract Wikipedia at
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_

for_Wikifunctions, or make up your own one.

(c) Complete the verbaliseSimpleAxiom method found in the downloaded skeleton
code (in OntoVerbal.java) to use the newly created declarative template to
generate a sentence for each axiom type. [Optional task]

2. All axioms of a certain type can be aggregated into a single set based on the role
played by a certain class. Using the axioms from the Valve example that has already
been presented, it is possible to form a set of all subsumption axioms that include the
Valve as the superclass and obtain the set {TricuspidV alve ⊑ V alve, PartialV alve ⊑
V alve}. We now need to design templates that can present such sets using English.
Execute the following tasks:

(a) Given classes A and B1, ..., Bn, design a template for verbalising the set of all
subsumption axioms Bi ⊑ A where A is fixed for all Bs (1 ≤ i ≤ n).

(b) Given classes A and B1, ..., Bn, design a template for verbalising the set of all
subsumption axioms A ⊑ Bi where A is fixed for all Bs (1 ≤ i ≤ n).

(c) Given classes A and B1, ..., Bn, design a template for verbalising the set of all
equivalence axioms A ≡ Bi where A is fixed for all Bs (1 ≤ i ≤ n).

(d) Given classes A and B1, ..., Bn, design a template for verbalising the set of disjoint
axioms A ⊑ ¬Bi where A is fixed for all Bs (1 ≤ i ≤ n).

(e) Given the class A, design a template for verbalising the set of all individuals of
A.

3. For each of the templates designed in Task 2, create a declarative form of your template
in a text file. [Optional task]

4. For each of the declarative templates created in Task 3, use them to complete the
verbaliseSimpleAxioms method found in OntoVerbal.java code. [Optional task]

5. Generating a paragraph from the previous sentences:

(a) Design a template to generate a paragraph that aggregates the sentences produced
by the templates you designed in Task 2.

(b) Create a declarative form of the aggregate template in a text file. [Optional
task]

3https://mustache.github.io/

4

https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions
https://meta.wikimedia.org/wiki/Abstract_Wikipedia/Template_Language_for_Wikifunctions
https://mustache.github.io/

(c) Complete the generateAggregatedSentencesmethod found in OntoVerbal.java
code to use your declarative template and generate the final paragraph. [Optional
task]

The example text listed above that was generated by the exercise version of the OntoVerbal
verbaliser is readable, however, it does not look completely natural. Let us now consider
how to improve the quality of the verbaliser’s output text.

In the verbalised text, we rely on the name of the class found in the URI. Specify one
or two alternate resources/locations you can use to retrieve the name of each class.

4 Generating German text

One is unlikely to encounter a lot of grammatical complexity when designing templates for
English. However, the same cannot be said when designing templates for languages such as
German. To the best of knowledge, the most recent and published verbaliser4 that supports
German relies on Grammatical Framework [6] – a language and environment for parsing and
generating natural language text.

For this part of the tutorial, you will explore some of the linguistic challenges that arise
for German for even basic axiom types. You will be tasked to design a template for a single
axiom. (Unlike the previous section, we will not explore the creation of code to generate the
text. Participants who are interested in the use of Grammatical Framework for capturing
their templates can do so in their own time.) If none of you group members speak German,
you may try Spanish (which will illustrate certain challenges sufficiently as well, although
not as much as with German).

4.1 Tasks

1. Consider axioms of the kind A ⊑ ∃R.B and design a template for presenting such
axioms in German. Use a piece of paper to explore the various possibilities and decide
on your best template.

2. Write down the output that will be produced by your chosen template for each of the
following axioms:

(a) Citizen ⊑ ∃loves.BlackDog

(b) RockMusician ⊑ ∃loves.BlackGoose

3. Each group must share their output for Task 2 with at least one other group and decide
on which output is best, if any.

4https://github.com/Attempto/ACE-in-GF

5

https://github.com/Attempto/ACE-in-GF

5 Generating isiZulu text

Some of the challenges that arise when trying to design templates for German also exist for
other languages and they may compounded for other languages. You will now explore this
by examining the design of templates for isiZulu.

The isiZulu verbaliser [1] was designed to be the first natural language generator for
ontologies that supports an African language. IsiZulu is member of the Nguni language
group and it is primarily spoken in Southern Africa. Like other Niger-Congo B languages,
it has complex morphology and its agreement system makes verbalisation challenging. The
isiZulu verbaliser is multi-platform as its written in Python and has the ability to take
supported axioms and transform them to produce text as shown in Figure 1.

Figure 1: Sample of texts generated by the isiZulu verbaliser

We demonstrate the challenge of verbalising axioms in the language by using output
that is produced by the OWLSIZ verbaliser [5]. When the verbaliser is fed the axiom
subClassOf(herb plant), it generates the question Ingabe lonke ihebhu lingumuthi? “Is every
herb a plant?” where underlined sections are the isiZulu class names. The sections that are
highlighted in bold are automatically generated and may change based on the value of the
classes. Technically, the values change as a result of the noun class of the OWL class’ lexical
item (see [7], for instance, for additional details on the isiZulu noun class system).

6

5.1 Tasks

Since participants may not be familiar with isiZulu, let us start by reverse engineering a
possible English template to an isiZulu one.

1. Suppose we verbalise A ⊑ B using the template Every [A] is a [B] in English. Use
Google Translate5 to devise an isiZulu template.

2. Use the template designed in Task 1 to generate what you believe would be the output
for the following axioms:

(a) Dog ⊑ Animal (with isiZulu labels: Inja ⊑ Isilwane)

(b) Student ⊑ Person (with isiZulu labels: Umfundi ⊑ Umuntu)

(Hint: You can consult the following page https://en.wiktionary.org/wiki/Appendix:
Zulu_concords)

References

[1] C. Maria Keet, Musa Xakaza, and Langa Khumalo. Verbalising OWL ontologies in isizulu
with python. In Eva Blomqvist, Katja Hose, Heiko Paulheim, Agnieszka Lawrynowicz,
Fabio Ciravegna, and Olaf Hartig, editors, The Semantic Web: ESWC 2017 Satellite
Events - ESWC 2017 Satellite Events, Portorož, Slovenia, May 28 - June 1, 2017, Re-
vised Selected Papers, volume 10577 of Lecture Notes in Computer Science, pages 59–64.
Springer, 2017.

[2] Shao Fen Liang, Donia Scott, Robert Stevens, and Alan L. Rector. Ontoverbal: a generic
tool and practical application to SNOMED CT. CoRR, abs/1312.2798, 2013.

[3] Shao Fen Liang, Robert Stevens, Donia Scott, and Alan L. Rector. Automatic verbal-
isation of SNOMED classes using ontoverbal. In Mor Peleg, Nada Lavrac, and Carlo
Combi, editors, Artificial Intelligence in Medicine - 13th Conference on Artificial Intelli-
gence in Medicine, AIME 2011, Bled, Slovenia, July 2-6, 2011. Proceedings, volume 6747
of Lecture Notes in Computer Science, pages 338–342. Springer, 2011.

[4] Shao Fen Liang, Robert Stevens, Donia Scott, and Alan L. Rector. Ontoverbal: a protégé
plugin for verbalising ontology classes. In Ronald Cornet and Robert Stevens, editors,
Proceedings of the 3rd International Conference on Biomedical Ontology (ICBO 2012),
KR-MED Series, Graz, Austria, July 21-25, 2012, volume 897 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2012.

[5] Zola Mahlaza and C. Maria Keet. OWLSIZ: An isiZulu CNL for structured knowledge
validation. In Proceedings of the 3rd International Workshop on Natural Language Gen-
eration from the Semantic Web (WebNLG+), pages 15–25, Dublin, Ireland (Virtual), 12
2020. Association for Computational Linguistics.

5https://translate.google.com

7

https://en.wiktionary.org/wiki/Appendix:Zulu_concords
https://en.wiktionary.org/wiki/Appendix:Zulu_concords
https://translate.google.com

[6] Aarne Ranta. Grammatical framework: Programming with multilingual grammars. CSLI
Publications, Center for the Study of Language and Information Stanford, 2011.

[7] Edith Khanyisile Twala. The noun class system of IsiZulu. Master’s thesis, University
of Johannesburg, 1992.

8

	Exercise outcomes
	Optional software dependencies
	Generating English text
	Tasks

	Generating German text
	Tasks

	Generating isiZulu text
	Tasks

